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Abstract
This paper establishes bounds on the homogenized surface tension for a heterogeneous
Allen-Cahn energy functional in a periodic medium. The approach is based on relating
the homogenized energy to a purely geometric variational problem involving the large scale
behaviour of the signed distance function to a hyperplane in periodic media. Motivated by
this, a homogenization result for the signed distance function to a hyperplane in both periodic
and almost periodic media is proven.

Mathematics Subject Classification 49K10 · 49K20 · 49Q20 · 74Q05

1 Introduction

1.1 The setting and statements of themain results

We examine anisotropic surface tensions arising from the periodic homogenization of
energy functionals in the study of phase transitions. Here, we focus on a subclass of prob-
lems presented in [14] where the authors study inhomogeneous media characterized by a
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heterogeneous double-well potential. Precisely, we consider double-well potentials of the
form

˜W (x, u) = a(x)W (u) := a(x)(1 − u2)2, (1.1)

with a : R
N → R continuous, strictly positive, and T

N -periodic, where T
N denotes the

standard N−dimensional torus. In [14], the authors addressed the �-limit of the gradient
regularized problem with energy Fε : H1(�) → [0,∞], defined by

Fε(u) :=
ˆ

�

[

1

ε
a
( x

ε

)

W (u) + ε

2
|∇u|2

]

dx . (1.2)

Their result pertained to a more general class of potentials ˜W (x, u), but the work presented
here relies critically on the product structure (1.1). The�-limit obtained in [14] has the typical
form of the weighted perimeter functional

F0(u) :=
{´

∂∗{u=−1}∩�
σ(ν{u=−1}(x)) dHN−1(x) if u ∈ BV (�; {−1, 1}),

+∞ otherwise,

where ν{u=−1} denotes the measure-theoretic external unit normal to the reduced boundary
of the level set {u = −1}, and the anisotropic surface tension σ : SN−1 → [0,∞) is defined
by a cell formula governed by a variational problem (see (1.4)).

In homogenization, the first step is to find σ, which characterizes the effective “homog-
enized” behavior of the system. A natural follow-up question is to obtain further refined
information which clarifies the asymptotic cell formula: this a posteriori investigation seeks
to understand a number of issues, such as bounds on the homogenized coefficients, regular-
ity, and ellipticity of the effective surface tension σ. This paper is concerned with the first of
these: bounds on the effective, anisotropic surface tension σ obtained from the analysis in
[14, 15], which we achieve via comparison with a novel “geodesic” formula. These bounds
are written in terms of a metric which takes into account the heterogeneities of the underlying
media. With regards to some of the other properties posed above (i.e. regularity), we mention
the works of [10, 20] which contain very interesting results in these directions.

To state and then motivate our results, we need to first recall the effective surface energy
density σ : SN−1 → (0,∞) which was introduced in [14]. To this end, we introduce some
notation.

Let N ≥ 2 denote the spatial dimension, and let {e1, e2, · · · , eN } be the standard orthonor-
mal basis of RN .

• Cubes: With respect to this basis, let Q := (− 1
2 ,

1
2 )

N be the unit cube in RN centered at
the origin, and for each ν ∈ S

N−1, let Qν be a unit cube centered at the origin with two
faces orthogonal to ν. Let �ν denote the plane through the origin with normal ν, and we
set �ν := �ν ∩ Qν, an (N − 1)−dimensional unit cube in the plane �ν.

• Half-Spaces: For each ν ∈ S
N−1, we define Hν := {x · ν > 0}. This is the “positive”

open half-space in the direction ν.
• Sequences: Inwhat follows,whenwewrite T → ∞,weunderstand an arbitrary sequence

{Tm}m∈N, with Tm → ∞ as m → ∞.

123



Anisotropic surface tensions for phase transitions Page 3 of 41   107 

The following hypotheses (H1)-(H4) are used in the sequel:

(H1) a : RN → (0,∞) is TN -periodic, i.e., a(x + kei ) = a(x) for all x ∈ R
N , k ∈ Z,

i ∈ {1, · · · , N }.
(H2) There exist 	 > θ > 0, such that for all x ∈ R

N , θ ≤ a(x) ≤ 	.
(H3) � ⊆ R

N is a Lipschitz domain.
(H4) a is continuous.

Let
C(T Qν) := {u ∈ H1 (T Qν) : u = ρ ∗ u0,ν on ∂(T Qν)

}

, (1.3)

with

u0,ν(y) :=
{

−1 if x · ν ≤ 0,

1 if x · ν > 0,

and ρ ∈ C∞
c (B(0, 1)), with 0 ≤ ρ ≤ 1, and

´
RN ρ(x) dx = 1. Following [14], we define

σ : SN−1 → (0,∞) by the cell formula

σ(ν) := lim
T→∞

1

T N−1 inf

{ˆ
T Qν

[

a(y)W (u) + 1

2
|∇u|2

]

dy : u ∈ C(T Qν)

}

. (1.4)

We now state the precise result of [14].

Theorem 1.1 ([14,Theorem1.6], see also [15]). Let {εk}k∈N be a sequence such that εk → 0+
as k → ∞. Assume that (H1)-(H3) hold, and that the function a is measurable.

(i) If {uk}k∈N ⊆ H1(�;R) satisfies

sup
k∈N

Fεk (uk) < +∞,

then, up toa subsequence (not relabeled), there exists some functionu ∈ BV (�; {−1, 1})
so that uk

L1(�)−−−→ u.

(ii) As k → ∞, Fεk

�−L1−−−→ F0, where

F0(u) =
{´

∂∗A σ(νA(x)) dHN−1(x) if u ∈ BV (�; {−1, 1}),
+∞ otherwise,

(1.5)

for σ : SN−1 → [0,∞) defined by (1.4), A := {u = −1}, and νA(x) is the measure
theoretic external unit normal to the reduced boundary ∂∗A at x.

(iii) σ : SN−1 → [0,∞) defined by (1.4) is continuous, and its one-homogeneous extension
is convex, and hence, locally Lipschitz in RN .

The formula (1.4) for σ embeds a one-parameter family of variational problems, hence-
forth called the cell problem. Our first main result consists of anisotropic bounds on σ in
relation to a novel geodesic formula which is expressed by solutions to an associated Eikonal
equation. To formulate our estimates, consider the Riemannian metric in R

N given by the
following: for any y0, y1 ∈ R

N ,

d√
a(y0, y1) := inf

γ

ˆ 1

0

√

a(γ (t))|γ̇ (t)| dt, (1.6)
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where the infimum is taken among Lipschitz curves γ : [0, 1] → R
N with γ ( j) = y j , j =

0, 1. Standard arguments via the Hopf-Rinow theorem entail that RN , with the d√
a metric,

is a complete metric space. For any ν ∈ S
N−1, recalling that

�ν := {x ∈ R
N : x · ν = 0},

we consider the signed distance function with respect to the d√
a metric, to the plane �ν.

Precisely,

hν(y) := sign(y · ν) inf
z∈�ν

d√
a(y, z). (1.7)

It is well known, and recalled in Lemma 2.2 below, that hν is Lipschitz continuous and
satisfies, pointwise a.e., the eikonal equation

|∇hν | = √
a in R

N .

We next present the first main result.

Theorem 1.2 Suppose that (H1)-(H4) hold, and let σ : SN−1 → [0,∞) be the anisotropic
surface energy as in (1.4). Let q : R → R be defined by

q(z) := tanh(
√
2z), z ∈ R.

For ν ∈ S
N−1, define

λ(ν) := lim inf
T→∞

1

T N−1

ˆ
T Qν

[

a(y)W (q ◦ hν) + 1

2
|∇(q ◦ hν)|2

]

dy,

λ(ν) := lim sup
T→∞

1

T N−1

ˆ
T Qν

[

a(y)W (q ◦ hν) + 1

2
|∇(q ◦ hν)|2

]

dy.

(1.8)

There exist �0 > 0 universal and λ0 : SN−1 → [0,�0] such that
λ(ν) − λ0(ν) ≤ σ(ν) ≤ λ(ν). (1.9)

Remark 1.3 We conjecture that the main result of [14], namely, Theorem 1.1, holds with an
identical cell formula, when a is merely almost periodic, as opposed to periodic. If this is the
case, then our bounds in Theorem 1.2 also apply to the setting where a is almost periodic.

Remark 1.4 While for simplicity, and in order to focus on the essence of our estimates, we
work with the specific choice of potential in (1.1), we believe that the bounds in Theorem
1.2 remain valid for more general potentials ˜W (y, z) := a(y)W (z),where z is vectorial (i.e.,
z ∈ R

d for some d ≥ 1), the potential W is nonnegative, and vanishes in exactly two points
p, q ∈ R

d in a suitably non-degenerate manner (e.g. minz=p,q D2W (z)ξ · ξ ≥ α|ξ |2 for all
ξ ∈ R

d , for some α > 0).
More generally, a number of more complicated phase transitions problems in the litera-

ture have asymptotic �−convergence results that yield anisotropic limiting surface tensions.
These surface tensions are generally described by localization principles or cell formulas,
that are not easy to compute. While convex variational problems always admit the powerful
convex duality principle (and related calibration-type methods) in order to obtain (sharp)
lower bounds, there are no similar systematic approaches to finding analogous lower bounds
in nonconvex problems. To this end, examining the scope of “equipartition bounds” such
as those in the present paper, in these more complicated settings, remains a very interesting
open direction.
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The computation of these bounds depends solely on the large-scale behavior of the distance
functions hν , for which one can readily invoke efficient numerical algorithms, for example
fast marching and sweeping methods [35]. As we explain in the next subsection, the structure
of the new geodesic formula, which is the basis for our bounds, is an intuitive generalization
of the Modica-Mortola framework for the homogeneous case a ≡ 1.

Motivated by these bounds, we next turn to rigorous analytical results concerning the
large-scale behavior of the distance functions hν . Precisely, we seek to characterize the limit

lim
T→∞

hν(T x)

T
, x ∈ R

N ,

in a suitable topology of functions. Our secondmain result resolves this question, by showing
that these rescaled functions converge locally uniformly to the signed distance function in
an effectively homogeneous medium.

Theorem 1.5 Suppose (H1)-(H4) hold. For each ν ∈ S
N−1, there exists a unique c(ν) ∈

[√θ,
√

	] such that for all K ⊆ R
N compact, we have

lim
T→∞ sup

x∈K

∣

∣

∣

∣

1

T
hν(T x) − c(ν)(x · ν)

∣

∣

∣

∣

= 0,

and c(ν) = c(−ν).

From the perspective of geometry, Theorem 1.5 characterizes the large-scale limiting
behaviour of the signed distance function to a hyperplane in a periodic Riemannian metric
that is conformal ot the Euclidean one. We refer to the works of Bangert [4] and Burago
[7], who studied the behaviour of “point-to-point” distances in periodic metrics, in greater
abstraction than what we study here. Under the same rescaling, they identify the effective
“stable norm” ‖x − y‖∗ which characterizes the effective distance between x, y ∈ R

N . In
Remark 5.12,we discuss some open directions relating this effectively homogeneous distance
function c(ν)(·) · ν with the stable norm ‖ · ‖∗ identified in these works.

Theorem 1.5 also implies a homogenization result for the Eikonal equation in half-spaces.
Indeed, it is well known (see for example [27]) that for each fixed ν ∈ S

N−1, for {Tm}m≥0
with Tm → ∞ as m → ∞, the functions km(x) := T−1

m hν(Tmx) and �(x) := c(ν)(x · ν)

are the unique viscosity solutions of
{

|∇km | = √
a(Tmx) in Hν,

km = 0 on �ν,
and

{

|∇�| = c(ν) in Hν,

� = 0 on �ν,
(1.10)

where we recall that Hν = {x · ν > 0}. We note that although hν is defined on all of RN ,
the well-posedness of hν as the unique viscosity solution of (1.10) only holds true in Hν .
Theorem 1.5 shows that viscosity solutions of the PDEs on the left side of (1.10) converge
locally uniformly to the viscosity solution of the PDE on the right. A stochastic (and possibly
viscous) version of these equations (termed the “planar metric problem”) in R

N -stationary
and finite range of dependent media (essentially independent and identically distributed
media) was introduced by Armstrong and Cardaliaguet [2] and studied by others [18, 21] in
the context of stochastic homogenization of geometric flows. In these works, they prove a
similar result holds true almost surely.Wewill discuss relatedwork and alternative approaches
to what we have taken here in Sect. 1.3.

Finally, we add that our argument for proving Theorem 1.5 also yields a homogenization
result for the planar metric problem in almost periodic media:
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Theorem 1.6 Suppose (H2)-(H4) hold, and a : RN → R is a Bohr almost periodic function
(see Definition 5.2 or Definition 5.13). For hν defined by (1.7), there exists a unique c(ν) ∈
[√θ,

√
	] such that for all K ⊆ R

N compact, we have

lim
T→∞ sup

x∈K

∣

∣

∣

∣

1

T
hν(T x) − c(ν)(x · ν)

∣

∣

∣

∣

= 0,

and c(ν) = c(−ν).

While we have stated Theorems 1.5 and 1.6 in terms of the signed distance function,
we note that our approach is also valid in proving homogenization results for the family of
functions

{

uTν
}

as T → ∞, where uTν : Hν → R is the unique viscosity solution of
{

H(∇uTν , T x) = 0 in Hν,

uTν = 0 on �ν,

whenever the Hamiltonian H satisfies the following:

• H(·, x) is convex, 1-homogeneous, and coercive, i.e.

lim
R→∞ inf

{

H(p, y) : |p| ≥ R, x ∈ R
N
}

= +∞.

• H(p, ·) is Lipschitz continuous and periodic or almost periodic.

Furthermore, if uTν is in fact defined on all of RN , and uTν = −uT−ν , then one can obtain a
homogenization result on all of RN , using the same arguments as in the proofs of Theorems
1.5 and 1.6.

1.2 Motivation with connections to the homogeneous Modica-Mortola problem

The homogeneous case of a ≡ 1 reduces to the famous problem in phase transitions and the
calculus of variations. The resulting homogeneous cell problem in the cell formula (1.4) for
σ is

inf

{ˆ
T Qν

[

W (u) + 1

2
|∇u|2

]

dy : u ∈ C(T Qν)

}

. (1.11)

A classical argument using algebraic manipulations, made famous in the work of Modica
and Mortola [30], yields that as T → ∞, the minimizer is the solution to

{

1
2 |∇u|2 = W (u) in R

N ,

u(y) → ±1 , as y · ν → ±∞.
(1.12)

It is clear that (1.12) encodes equipartition of energy between the gradient singular pertur-
bation term and the potential term in the energy, see (1.11). The optimal u for (1.11) is thus
given by

u(y) = q ◦ (y · ν),

where q satisfies the associated Euler-Lagrange ODE,

q ′′ = W ′(q) lim
z→±∞ q(z) = ±1, (1.13)

which is translation-invariant. Associated to this continuous symmetry, Noether’s theorem
yields a conservation law. This can be more simply derived, by multiplying (1.13) by q ′, and

123
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integrating. We obtain |q ′|2 = 2W (q), a relation which dictates equipartition of energy. The
solution to (1.13) is q(z) = tanh(

√
2z). Note that y · ν is precisely the signed distance to

the minimizing interface �ν = {x ∈ R
N : x · ν = 0}. The resulting surface tension is the

constant

σ = √
2
ˆ 1

−1

√

W (s) ds.

Turning to the minimizer of the inhomogeneous cell problem

inf

{ˆ
T Qν

[

a(y)W (u) + 1

2
|∇u|2

]

dy : u ∈ C(T Qν)

}

, (1.14)

one could expect that q ◦ (y · ν) is simply replaced with q ◦hν(y), where the inhomogeneous
distance function hν is defined by (1.7). Indeed, we see that by definition of hν , we have

1

2
|∇q(hν(y))|2 = 1

2
(q ′(hν(y))

2|∇hν(y)|2 = a(y)W (q(hν(y)),

in which case q ◦ hν achieves equipartition of energy. With this in hand, the cell formula
(1.4) for σ (assuming the limit exists) would take the form

σ(ν) = lim
T→∞

1

T N−1

ˆ
T Qν

[

a(y)W (q ◦ hν) + 1

2
|∇(q ◦ hν)|2

]

dy. (1.15)

That is, in Theorem 1.2, we might have λ0(ν) = 0 with σ(ν) = λ(ν) = λ(ν). This is false,
at least for rational directions ν, and we address why in the following subsection. Moreover,
it is never the case that q ◦ hν is a minimizer of the inhomogeneous cell problem (1.14) for
any T < ∞. What Theorem 1.2 shows, however, is that this simple explicit formula yields
upper and lower bounds for σ . Moreover, we make the case that on large scales as T → ∞,
the minimizer of (1.14) is close to q ◦ hν (see Proposition 3.4 in comparison with (2.3)).

In the theory of homogenization, questions about bounds on the effective coefficients have
a rather long and rich history in the context of optimal design (see [1, 11, 25, 28, 29, 32] among
many, many other references). This body of literature (largely) deals with effective bounds
on linear elliptic (systems) of PDE using the homogenization method. Closer in spirit to our
work is the paper [6], where the authors use nonlinear homogenization to study the so-called
“shape memory effect” in polycrystals: the viewpoint there being that the heterogeneities
in the texture field of the polycrystal within a nonconvex mesoscopic variational theory,
upon nonlinear homogenization, yields a macroscopic theory whose global minimizers are
recoverable strains. This coarse-graining procedure yields valuable bounds on the possible
recoverable strains of the polycrystal– information that is not directly accessible from the
mesoscopic theory.

1.3 Outline of the proofs and discussion

Here we outline the proof of Theorem 1.2. We then discuss whether or not it is possible for
λ0(ν) = 0 and σ(ν) = λ(ν), and this leads us to a discussion of Theorem 1.5.

The upper bound in Theorem 1.2 is more or less immediate: it essentially comes from
energy comparison.We do need to alter the boundary conditions in the cell formula (1.4), and
this is achieved by the standard De Giorgi slicing technique, see Appendix A. This procedure
yields that for any ν ∈ S

N−1, the surface tension σ(ν), defined in (1.4), has the alternative
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representation given by

σ(ν) = lim
T→∞

1

T N−1 inf

{ˆ
T Qν

[

a(y)W (u) + 1

2
|∇u|2

]

dy : u = q ◦ hν on ∂(T Qν)

}

.

(1.16)

Having proven the upper bound in Theorem 1.2, we turn to the lower bound. By the Direct
Method in the Calculus of Variations, for each fixed T there is a minimizer of the problem
inside, which we denote by uT . In other words,

uT ∈ argmin

{

1

T N−1

ˆ
T Qν

[

a(y)W (u) + 1

2
|∇u|2

]

dy : u = q ◦ hν on ∂(T Qν)

}

.

Define

φ(z) := √
2
ˆ z

0

√

W (s) ds, z ∈ R.

Consider the function hν introduced in (1.7). It is easily shown (see Lemma 2.2 below) that

|∇hν(y)| = √a(y), for a.e. y ∈ R
N .

For any T � 1, completing squares we find

1

T N−1

ˆ
T Qν

[

a(y)W (uT ) + 1

2
|∇uT |2

]

dy

=
√
2

T N−1

ˆ
T Qν

∇hν ·√W (uT )∇uT dy + 1

T N−1

ˆ
T Qν

∣

∣

∣

∣

∇uT√
2

−√W (uT )∇hν

∣

∣

∣

∣

2

= 1

T N−1

ˆ
T Qν

∇hν · ∇(φ(uT )) dy + 1

T N−1

ˆ
T Qν

∣

∣

∣

∣

∇uT√
2

−√W (uT )∇hν

∣

∣

∣

∣

2

≥ 1

T N−1

ˆ
T Qν

∇hν · ∇(φ(uT )) dy

= 1

T N−1

ˆ
T Qν

∇hν · ∇(φ(q ◦ hν)) dy + 1

T N−1

ˆ
T Qν

∇hν · ∇ (φ(uT ) − φ(q ◦ hν)) dy

= 1

T N−1

ˆ
T Qν

[

a(y)W (q ◦ hν) + 1

2
|∇(q ◦ hν)|2

]

dy

+ 1

T N−1

ˆ
T Qν

∇hν · ∇ (φ(uT ) − φ(q ◦ hν)) dy,

(1.17)
where, in the last line, we used the fact that q ◦ hν achieves equipartition of energy, while
completing squares one more time. Defining

λ(ν) := lim sup
T→∞

1

T N−1

ˆ
T Qν

[

a(y)W (q ◦ hν) + 1

2
|∇(q ◦ hν)|2

]

dy,

λ(ν) := lim inf
T→∞

1

T N−1

ˆ
T Qν

[

a(y)W (q ◦ hν) + 1

2
|∇(q ◦ hν)|2

]

dy,

the proof of the lower bound in Theorem 1.2 (specifically (1.9)) is now immediate, provided
we can show that

lim sup
T→∞

1

T N−1

∣

∣

∣

∣

ˆ
T Qν

∇hν(y) · (φ(uT ) − φ(q ◦ hν)) dy

∣

∣

∣

∣

=: λ0(ν) ≤ �0, (1.18)

123
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for some �0 > 0. Obtaining this error bound is complicated by the fact that λ0(ν) couples
oscillations and concentrations. In Sect. 3, we present novel tools and concentration estimates
in order to control λ0(ν), which we briefly summarize here:

(1) We recall that for each T > 1, the function uT ∈ H1(T Qν) is a minimizer of the varia-
tional problem in (1.16). In Theorem 3.1 below, we show that, as T → ∞, {uT (T ·)}T>0

converges to u0,ν strongly in L1(Qν) , where u0,ν is given by

u0,ν(y) :=
{

1 y · ν > 0,
−1 y · ν < 0.

We emphasize that this convergence is not simply along a subsequence, since the limit
is unique. This further implies that φ(q ◦ hν(T ·)) also converges in L1(Qν) to the same
limit, u0,ν . It follows that

φ(uT (T ·)) − φ(q ◦ hν(T ·)) → 0 (1.19)

in L1(Qν) as T → ∞.

(2) For each T � 1, writing uT (y) =: tanh(√2wT (y)), we show in Lemma 3.2 that

−1 < uT (y) < 1, y ∈ T Qν . (1.20)

We prove in Proposition 3.4 that there exist positive numbers α0, η0 depending only on
ν, θ and 	, such that

√
	(y · ν) − α0 ≥ wT (y) ≥ √

θ(y · ν) − η0 if wT > 0,

−√
θ(y · ν) + η0 ≥ wT (y) ≥ −√

	(y · ν) + α0 if wT (y) < 0.
(1.21)

In particular, this shows that the profiles uT and q ◦ hν, in blown up variables as in (a)
above, converge to the sharp interface limit at the same rate (see (2.3)).

Naturally, the above mentioned results are proven in order to pass to the limit in the error
term in (1.17). It is easy to see that the topology of convergence in item (1) is not strong
enough to conclude that the asymptotic contribution of this error term vanishes. However,
we are able to put these ingredients together, to obtain bounds on the error term in (1.17).
This is carried out in Sect. 4.

These results beg the following natural questions:

• Can the error term λ0(ν) = 0, with σ(ν) = λ(ν) = λ(ν)?
• Is it ever the case that the minimizer uT to the cell problem is simply q ◦ hν?

It turns out that the answer to both of these questions is no, unless a is constant. In regards
to the first question, William Feldman and Peter Morfe [19] have recently shown the authors
the following: if (1.15) holds true for ν ∈ S

N−1 a rational direction (i.e., when ν has rational
components), then one can argue that q ◦ hν must be a minimizer on an infinite strip. An
analysis of the Euler-Lagrange equations readily leads to a contradiction in that hν must
be harmonic (which is true if and only if a is constant). When ν ∈ S

N−1 is an irrational
direction, one can still argue using techniques from [31] that a must be constant. This implies
that, surprisingly, equipartition of energy does not hold in any direction ν ∈ S

N−1, unless a
is constant.

An interesting question, which we are unable to resolve here, is the following: for a given
choice of periodic heterogeneitiesa, is at least one of the bounds inTheorem1.2 close to being
sharp? Naturally, verifying the sharpness of the lower bound in Theorem 1.2 requires passing
to the limit in the term λ0(ν); this in turn requires convergence of {∇hν(Tm ·)}m in suitable
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topologies. We provide partial progress in this direction with the second main contribution
of this paper in Theorem 1.5: we show that there exists a unique c(ν) ∈ [√θ,

√
	] such that

, for any sequence {Tm}m∈N tending to infinity, for the functions km(·) := T−1
m hν(Tm ·),

{km}m converges locally uniformly in RN to x �→ c(ν)x · ν.

We prove Theorem 1.5 (and analogously Theorem 1.6) in two steps. In Lemma 5.8, we
first show that for every sequence {Tm} tending to infinity, there exists a subsequence and
a function c(ν) ∈ [√θ,

√
	] such that km(x) → c(ν)x · ν locally uniformly in R

N . The
proof of Lemma 5.8 uses various properties of Bohr almost periodic functions and ideas
which come from the proof of the Stone-Weierstrauss theorem. Lemma 5.8 also holds true in
the almost-periodic setting with essentially no modifications to the proof. Upon establishing
Lemma 5.8, we then argue that c(ν) must be unique in order to establish convergence of the
full sequence.

Our uniqueness argument relies on the existence of correctors in the setting of periodic
(or almost-periodic) Hamilton-Jacobi equations (see Theorem 5.10 and [23,Theorem 2]). It
was pointed out to us that an alternative approach to proving that

{km}m converges locally uniformly in Hν to x �→ c(ν)x · ν,

could use the existence of periodic (or almost-periodic) correctors, a comparison principle
on half-spaces (stated in [21], without proof), and the perturbed test function method of
Evans [16]. While this argument may appear more direct to specialists in homogenization
of Hamilton-Jacobi equations, we highlight that aside from the existence of correctors, the
proofs of Theorems 1.5 and 1.6 are entirely self-contained.Moreover, to our knowledge these
results on the half-plane have not appeared in the extensive homogenization literature.1 Our
results concerning the large scale behavior for hν are contained in Sect. 5.

2 Basic properties of h� and equipartition of energy

2.1 Existence and basic properties of h�

We introduce a Riemannian metric inRN ,which is conformal to the standard Euclidean one.
To be precise, given a Lipschitz curve γ : [0, 1] → R

N , we define its length to be

L(γ ) :=
ˆ 1

0

√

a(γ (t))|γ̇ (t)| dt .

Naturally, L(γ ) does not depend on the parametrization of γ.We define the distance between
points y1, y2 ∈ R

N in the
√
a−metric, by

d√
a(y1, y2) := inf

γ (0)=y1,γ (1)=y2
L(γ ). (2.1)

The existence of a minimizer, i.e., a geodesic in (2.1), and its regularity, follow by classical
arguments via the Hopf-Rinow theorem, since a is bounded away from zero by (H2) (for
details, see [36,Lemma 2.9]), thereby rendering R

N geodesically complete.

1 Since submitting this paper, Scott Armstrong has kindly informed us that the paper [2] contains a quantitative
proof of homogenization of the planarmetric problem using comparison principles in stationary ergodicmedia,
along with a discussion of prior related literature.

123



Anisotropic surface tensions for phase transitions Page 11 of 41   107 

Let ν ∈ S
N−1, set �ν := {x ∈ R

N : x · ν = 0}, and define hν : RN → R by

hν(x) :=
{

d√
a(x, �ν) if x · ν ≥ 0,

−d√
a(x, �ν) if x · ν < 0.

(2.2)

The function hν(x) represents a signed distance function from x to the plane �ν .

Remark 2.1 Observe that, by (2.2), and since �ν = �−ν , we have

hν(x) =
{

d√
a(x, �ν), x · ν ≥ 0

−d√
a(x, �ν), x · ν < 0,

and h−ν(x) =
{

d√
a(x, �ν), x · (−ν) ≥ 0,

−d√
a(x, �ν), x · (−ν) < 0,

which imply that
h−ν(x) = −hν(x).

In particular, hν is odd with respect to ν. As hν is a type of signed distance, it in fact satisfies
an Eikonal equation.

Lemma 2.2 The function hν is Lipschitz continuous in R
N , with

|∇hν(x)| = √a(x) for a.e. x ∈ R
N .

Proof See [36,Lemma 11]. ��
Since |∇hν | = √

a ∈ [√θ,
√

	] by (H2), by (2.1) and (2.2) we have
{√

θ |x · ν| ≤ hν(x) ≤ √
	|x · ν| if x · ν ≥ 0,

−√
	|x · ν| ≤ hν(x) ≤ −√

θ |x · ν| if x · ν < 0.
(2.3)

2.2 Equipartition of energy: |∇u|2 = 2a(x)W(u)

In this section we use the Riemannian geometry framework introduced above to find approx-
imate “one-dimensional” solutions to the degenerate Eikonal equation

|∇u|2
2

= a(x)W (u) (2.4)

in large cubes in R
N , in a sense to be made precise. This analysis is crucial in the proof of

Theorem 1.2. Taking inspiration from the cell formula (1.5), for ν ∈ S
N−1, we seek solutions

u to (2.4) that “connect” the zeroes of W , i.e., u(x) → ±1 as x · ν → ±∞. Consider the
ansatz

u(x) := (q ◦ hν)(x),

for some q : R → R to be determined. Inserting this into (2.4), we obtain

1

2
(q ′(hν(x))

2|∇hν(x)|2 = a(x)W (q(hν(x)).

As |∇hν | = √
a pointwise a.e. (see Lemma 2.2), the function q must satisfy the ordinary

differential equation

q ′ = √
2
√

W (q). (2.5)
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By (2.3), we see that hν(x) → ±∞ as x · ν → ±∞. In particular, to connect the zeros of
u at ±∞, we require that q(z) → ±1 as z → ±∞. In order to identify this function q , we
consider a suitable initial condition associated to (2.5) in Proposition 2.3.

For convenience, we recall some basic properties of the hyperbolic tangent and secant
functions, tanh and sech, respectively, which will be used throughout the rest of the paper:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

tanh(x) = ex−e−x

ex+e−x is an odd function,

−1 < tanh(x) < 1, for all x ∈ R,

There exists c1, c2 > 0 such that

{

limx→∞ |1 − tanh(x)| ≤ c1e−c2|x |,
limx→−∞ |−1 − tanh(x)| ≤ c1e−c2|x |,

1 − tanh2(x) = sech2(x), for all x ∈ R,

| sech(x)| =
∣

∣

∣2 ex

e2x+1

∣

∣

∣ ≤ 2e−|x | is an even function, and 0 ≤ sech(x) ≤ 1,∀x ∈ R,

(sech(x))′ = − tanh(x) sech(x), (tanh(x))′ = sech2(x),∀x ∈ R,

sech4(x) is decreasing on (0,∞).

(2.6)

Proposition 2.3 There exists a unique solution to

q ′ = √
2
√

W (q), q(0) = 0. (2.7)

Moreover, there exist c1, c2 > 0 such that
{

q(z) ≥ 1 − c1e−c2|z| if z > 0,

q(z) ≤ −1 + c1e−c2|z| if z < 0.
(2.8)

In particular, q(z) → ±1 as z → ±∞.

Proof It is easy to see that q(z) := tanh(
√
2z) is the unique solution to (2.7). The exponential

bounds (2.8) immediately follow from (2.6). ��

3 Properties of minimizers in the cell problem

By Lemma A.1, which enables the use of new boundary conditions involving q ◦hν , we have

σ(ν) = lim
T→∞

1

T N−1 inf
{

ˆ
T Qν

[

a(y)W (u) + 1

2
|∇u|2

]

dy :

u ∈ H1(T Qν), u|∂T Qν = q ◦ hν

}

= lim
T→∞ inf

{

ˆ
Qν

[

Ta(T x)W (V ) + 1

T

|∇V |2
2

]

dx :

V ∈ H1(Qν), V |∂Qν = q ◦ hν(T ·)
}

. (3.1)

In the remainder of this section, we suppress the subscript m for notational ease, with the
understanding thatwhenwe let T → ∞ in the end,we do so along this particular subsequence
Tm → ∞.

We introduce the function vT ∈ H1(Qν) satisfying

vT ∈ argmin

{

ET (V ) :=
ˆ
Qν

[

Ta(T x)W (V ) + 1

T

|∇V |2
2

]

dx : V |∂Qν = q ◦ hν(T x)

}

.

(3.2)
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Since q ◦hν(T ·) is an admissible competitor in the variational problem (3.1), wemay assume
that ˆ

Qν

[

Ta(T x)W (vT ) + 1

T

|∇vT |2
2

]

dx

≤
ˆ
Qν

[

Ta(T x)W (q ◦ hν(T x)) + 1

T

|∇q ◦ hν(T x)|2
2

]

dx

≤ O(1)

(3.3)

as T → ∞.

Lemma 3.1 Let vT : Qν → R satisfy (3.2). There exists a subsequence, not relabeled, such
that

vT → u0 in L1(Qν), (3.4)

where, we recall, u0 : RN → R is defined by

u0(x) :=
{

1 x · ν > 0,
−1 x · ν < 0.

Proof Since vT satisfies (3.2), it verifies the uniform energy bound (3.3). As a is bounded
away from zero, this estimate yields, via a standard compactness argument using theModica-
Mortola inequality, that {vT } is precompact in L1(Qν) (see [22] or [36]). Let U be an L1

cluster point of {vT }T . By (3.1), the energies of the minimizers vT converge to σ(ν).

We recall that σ(ν) is the limiting energy corresponding to u0, and we claim thatU = u0.
We extend vT to all of RN by setting vT (x) := q ◦ hν(T x) for x /∈ Qν and, likewise, we
extend U to all of RN by setting U = u0 outside Qν . Let τ > 0 be fixed, and we work in
the dilated cube (1 + τ)Qν . We label the restrictions of vT and U to (1 + τ)Qν by ṽT , ˜U ,

respectively. By [17,Theorem 5.8], ˜U ∈ BV ((1+τ)Qν).Wenote that by the aforementioned
compactness arguments,

ṽT → ˜U in L1((1 + τ)Qν) as T → ∞, (3.5)

DṽT⇀D˜U weakly-* in the sense of measures as T → ∞, (3.6)

for all τ > 0. Since U is piecewise constant, ∇˜U = 0, and we find that dD˜U =
2ν
˜U dHN−1�J

˜U , where J
˜U is the jump set of ˜U and ν

˜U = d D˜U
d |D˜U | on J

˜U (see [26]). We
claim that ˆ

J
˜U∩Qν

dD˜U = 2ν. (3.7)

By (3.6), for every φ ∈ Cc((1 + τ)Qν) and for every unit vector e ∈ S
N−1, we haveˆ

(1+τ)Qν

φe · ∇ṽT dx =
ˆ

(1+τ)Qν

φe · dDṽT →
ˆ

(1+τ)Qν

φe · dD˜U as T → ∞.

(3.8)

In particular, let φ ∈ C∞
c ((1 + τ)Qν) be such that φ ≡ 1 on Qν, 0 ≤ φ ≤ 1, and φ ≡ 0

on (1 + τ)Qν\(1 + τ/2)Qν . If e ∈ {ν1, · · · , νN }, we then have that as T → ∞,ˆ
(1+τ/2)Qν\Qν

φe · ∇ṽT dx +
ˆ
Qν

e · ∇ṽT dx →
ˆ

(1+τ/2)Qν\Qν

φe · D˜U +
ˆ
Qν

e · dD˜U .
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As ṽT ≡ qT ◦ hν(T ) and ˜U = u0 outside Qν , we find that the first and the third terms
in the previous display are O(τ N−1). It remains to evaluate the limit of the second term as
T → ∞. With the choice e = νN = ν, by the fundamental theorem of calculus, we find
that, as T → ∞,

ˆ
Qν

ν · ∇ṽT dx → 2, as T → ∞,

because q ◦ hν(T ·) is exponentially close to 1 and −1 respectively, on the top and bottom
faces of Qν, i.e., {x ∈ Qν : x · ν = ± 1

2 }. It follows that
ˆ
Qν

ν · dD˜U = 2 + O(τ N−1).

Finally, for the lateral directions e = ν1, · · · , νN−1, we have,

ˆ
Qν

e · DṽT dx =
ˆ
Qν∩
{

x ·e= 1
2

} q ◦ hν(T x) dHN−1(x)

−
ˆ
Qν∩
{

x ·e=− 1
2

} q ◦ hν(T x) dHN−1(x)

−−−→
T→∞

ˆ
Qν∩
{

x ·e= 1
2

} u0 dHN−1(x) −
ˆ
Qν∩
{

x ·e=− 1
2

} u0 dHN−1(x) = 0,

We deduce that

ˆ
Qν

dD˜U =
N
∑

i=1

(ˆ
Qν

dD˜U · νi

)

νi = 2ν + O(τ N−1). (3.9)

Since |D˜U | = 2HN−1�J
˜U , it follows that

J
˜U ∩ Qν = JU ∪ {x ∈ ∂Qν : trace(U )(x) �= u0(x)} =: KU . (3.10)

and the set KU on the right hand side is independent of τ > 0. Indeed, note that the extension
˜U ofU does not depend on τ, and we now call itU 0. The Radon-Nikodym derivative dDU0

d|DU0|
is equal to νU on JU , and it is equal to the normal to the boundary of Qν , ν∂Qν , on KU\JU .

Now (3.9) reduces to

ˆ
KU

dDU 0 = 2ν + O(τ N−1).

Letting τ → 0+ we deduce that

ˆ
KU

DU 0 = 2ν. (3.11)

By Theorem 1.1 on (1 + τ)Qν for each fixed τ, then sending τ → 0+, and then using
Jensen’s inequality owing to the convexity of the one-homogeneous extension of σ , σ̃ , we

123



Anisotropic surface tensions for phase transitions Page 15 of 41   107 

have

σ(ν) = lim
τ→0+ lim inf

T→∞ ET (̃vT ; (1 + τ)Qν)

≥ lim sup
τ→0

ˆ
J
˜U∩(1+τ)Qν

σ
(

ν
˜U

)

dHN−1 ≥ lim sup
τ→0

ˆ
J
˜U∩Qν

σ
(

ν
˜U

)

dHN−1

=
ˆ
KU

σ

(

d DU 0

d |DU 0|
)

dHN−1

=
ˆ
KU

σ̃

(

d DU 0

d| DU 0|H
N−1(KU )

)

dHN−1

HN−1(KU )

≥ σ̃

(ˆ
KU

d DU 0

d| DU 0|H
N−1(KU )

dHN−1

HN−1(KU )

)

.

(3.12)

But |DU 0|�KU = 2HN−1�KU , and we find by the one-homogeneity of σ̃ that

σ̃

(ˆ
KU

d DU 0

d| DU 0|
)

HN−1(KU ) = 1

2
σ̃

(ˆ
KU

d DU 0
)

. (3.13)

Again using the one-homogeneity of σ̃ , the equality (3.11) implies that the right hand
side of (3.13) evaluates to 1

2 σ̃ (2ν) = σ̃ (ν) = σ(ν). In turn, plugging this into the chain
of inequalities in (3.12), we learn that we must have equalities throughout. But equality

holds in Jensen if and only if d DU0

d| DU0| �KU is a constant. This immediately implies that

HN−1 (x ∈ ∂Qν : trace(U ) �= u0) = 0, and thus that U inherits the trace u0 from the
sequence {vT }. Furthermore, we conclude KU = JU up to a set of HN−1 null measure,
and so, U ≡ u0 in Qν, yielding (3.4). ��

For what follows, we need finer, quantitative versions of the foregoing convergence result
and, in particular, of the convergence of the functions uT . The remainder of this section is
devoted to obtaining these estimates. The next preparatory lemma is an immediate conse-
quence of the maximum principle.

Lemma 3.2 Let uT be a minimizer to (1.16). Then

−1 < uT (y) < 1, y ∈ T Qν .

Proof For each T , as uT is a minimizer of the energy
ˆ
T Qν

[

a(y)W (u) + 1

2
|∇u|2

]

dy,

subject to Dirichlet boundary conditions uT = q ◦ hν along ∂(T Qν), it follows by standard
arguments that uT is a classical solution of the associated Euler-Lagrange equations

{

�u = a(y)W ′(u) = −4a(y)u(1 − u2) in y ∈ T Qν,

u(y) = q ◦ hν(y), on y ∈ ∂(T Qν).
(3.14)

We know that for any T < ∞, supy∈∂(T Qν ) |q ◦ hν | < 1. Suppose, by way of contradiction,
that there exists y0 ∈ T Qν such that

uT (y0) = max
y∈T Qν

uT (y) > 1.
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Then �uT (y0) ≤ 0, while W ′(uT (y0)) > 0, and a(y0) ≥ θ > 0, yielding a contradiction.
It follows that uT (y) ≤ 1 for every y ∈ T Qν . A similar argument shows that uT (y) ≥ −1
for every y ∈ T Qν . Finally, a standard argument (as in the proof of the strong maximum
principle) using the Hopf lemma yields the desired strict inequalities. ��
Define

wT := 1√
2
tanh−1 uT . (3.15)

By Lemma 3.2, wT : T Qν → (−∞,∞) is of class C∞(T Qν). Further, wT is a classical
solution to the PDE
{

�wT (y) = 4√
2
tanh(

√
2wT (y))

(|∇wT (y)|2 − a(y)
)

, in y ∈ ∂(T Qν),

wT (y) = hν(y) on y ∈ ∂(T Qν).
(3.16)

In the remainder of this section we obtain fine properties of the function wT , specifically in
Proposition 3.4 below. A crucial ingredient in the argument is the following result due to L.
Caffarelli and A. Cordoba [8,Theorem 2].

Proposition 3.3 Consider the functions uT : T Qν → R. Then, as T → ∞, for each
μ ∈ (−1, 1) the level sets {x ∈ T Qν : uT (x) = μ} are at a uniformly bounded distance
from �ν ∩ T Qν . To be precise, for each μ ∈ (−1, 1) there exists a constant η(μ, ν) > 0,
only depending on μ and ν, and independent of T � 1, such that

{y ∈ T Qν : uT (x) = μ} ⊂ {y ∈ T Qν : |y · ν| < η(μ, ν)}. (3.17)

Equipped with the foregoing proposition, we are ready to prove the proof the main result of
this section, namely, that the functions wT defined in (3.15) are essentially linear.

Proposition 3.4 Let wT be as in (3.15), let T � 1, and define the constants η0 :=√
θη(0, ν) > 0, and α0 := √

	η(0, ν) > 0, where η(0, ν) is obtained from Proposition 3.3
corresponding to the level set μ = 0. Then, for all T � 1, the following hold:

√
	(y · ν) − α0 ≥ wT (y) ≥ √

θ(y · ν) − η0 if wT (y) > 0,

− √
θ(y · ν) + η0 ≥ wT (y) ≥ −√

	(y · ν) + α0 if wT (y) < 0.
(3.18)

Proof Owing to the continuity of wT , the sets

�± := {y ∈ T Qν : wT (y) ≷ 0}
are open. We show the lower bound in the first statement in (3.18). Define the function
ζT : �+ → R by the formula

ζT (y) := y · ν

wT (y) + η0
, y ∈ �+.

Being a continuous function on the compact set �±, it achieves its maximum. The assertion
in the first inequality of (3.18) is that the maximum value of this function is no more than
1√
θ
. Suppose, by contradiction, this were false. Let y0 ∈ �+ be a point at which ζT achieves

its maximum, and

ζT (y0) >
1√
θ
. (3.19)

There are three possibilities, which we will now argue can never occur:
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(1) y0 ∈ �+ ∩ ∂(T Qν) : by virtue of (2.3), along ∂(T Qν) we know that wT (y) = hν(y) ≥√
θ(y · ν) . This implies that wT (y) + η0 >

√
θ(y · ν) for every y ∈ ∂(T Qν) ∩ �+.

Thus, under the contradiction hypothesis (3.19), ζT cannot attain its maximum here.
(2) y0 ∈ �+ : in this case, y0 would be an interior maximum point of ζT , and so,

∇ζT (y0) = 0, �ζT (y0) ≤ 0. (3.20)

Towards ruling out this case, we derive the PDE satisfied by ζT . From the definition of
ζT , we note that at any y ∈ �+,

ν = (wT (y) + η0)∇ζT (y) + ζT (y)∇wT (y). (3.21)

Taking divergence of this relation and applying (3.16), we find that at any y ∈ �+,

0 = 2∇ζT (y) · ∇wT (y) + (wT (y) + η0)�ζT (y) + ζT (y)�wT (y)

= 2∇ζT (y) · ∇wT (y) + (wT (y) + η0)�ζT (y)

+ 4√
2
ζT (y) tanh(

√
2wT (y))

(|∇wT (y)|2 − a(y)
)

.

(3.22)

In order to evaluate (3.22) at y = y0, we note that from (3.21) and (3.20), we have

ν = ζT (y0)∇wT (y0).

By the contradiction hypothesis (3.19), this yields

|∇wT (y0)| = 1

ζT (y0)
<

√
θ. (3.23)

Moreover, the contradiction hypothesis (3.19) also guarantees that y0 · ν > 0, since
y0 ∈ �+. Inserting this into (3.22) at y = y0, and applying (3.20), (3.23), and a ≥ θ ,
we have

0 = �ζT (y0) + 4√
2
ζT (y0)

tanh(
√
2wT (y0))

wT (y0) + η0

(

1

ζ 2
T (y0)

− a(y0)

)

<
4√
2
(y0 · ν) tanh(

√
2wT (y0))(θ − θ),

which yields a contradiction.
(3) y0 ∈ T Qν ∩ {wT = 0} : finally, if this were to hold, we would havewT (y0) = 0, so that

ζT (y0) = y0 · ν

η0
>

1√
θ

,

i.e., y0 · ν >
η0√
θ

= η(0, ν). But wT (y0) = 0 implies that uT (y0) = tanh(wT (y0)) is

0, and by Proposition 3.3 we must have |y0 · ν| ≤ η(0, ν), provided T � 1. We again
conclude in a contradiction.

This implies that the contradiction hypothesis (3.19) cannot hold, and the proof of the lower
bound in the first equation in (3.18) is complete. The proof of the other inequalities is similar,
with only minor differences. ��
Having proven Proposition 3.4, we are able to get fine exponential decay estimates for the
function uT and its derivatives, away from the interface �ν.
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Proposition 3.5 For C = 4e2
√
2η0 and c = 2

√
2
√

θ , for all T sufficiently large,

1 − u2T (y) ≤ Ce−c|y·ν|, y ∈ T Qν . (3.24)

Moreover, there exists a universal constant C1 > 0 such that for all T � 1,

|∇uT (y)| ≤ C1e
−c|y·ν| (3.25)

Proof The first inequality is immediate by noting that 1 − u2T = 1 − tanh2(
√
2wT ) =

sech2(
√
2wT ), and wT satisfies the estimates in Proposition 3.4, and (2.6). For the second,

by the Euler-Lagrange equations we know that

|�uT (y)| = |a(y)W ′(uT )| = |4a(y)uT (1 − u2T )| ≤ Ce−c|y·ν| y ∈ T Qν .

Rescaling, by setting y = T x and defining vT (x) := uT (T x), we find that

|�vT (x)| = T 2a(T x)|W ′(vT (x))| ≤ CT 2e−cT |x ·ν| x ∈ Qν .

Elliptic estimates yield

|∇vT (x)| ≤ C1T e
−cT |x ·ν|.

Scaling back, one recovers (3.25). ��

4 Bounds on the error term

Recall the remainder term λ0 introduced in (1.18). The main result of this section is next.

Proposition 4.1 There exists a constant �0 > 0 such that

λ0(ν) ≤ �0 for all ν ∈ S
N−1. (4.1)

Proof We know that |∇hν(y)| ≤ √
	. Moreover, from Proposition 3.4 and 3.5 we have that

|∇φ(uT (y))| = |φ′(uT (y))∇uT (y)| = √
2(1 − u2T (y))|∇uT (y)| ≤ Ce−c|y·ν|,

and, similarly,

|∇φ(q ◦ hν)| = √
2(1 − tanh2(

√
2hν))|∇hν | ≤ Ce−c|y·ν|.

Then, for λ0(ν) defined by (1.18),

λ0(ν) = lim sup
T→∞

1

T N−1

∣

∣

∣

∣

ˆ
T Qν

∇(φ(uT (y)) − φ(q ◦ hν)) · ∇hν

∣

∣

∣

∣

≤ √
	 lim sup

T→∞
1

T N−1

ˆ
T Qν

Ce−c|y·ν| dy

≤ C
√

	

ˆ ∞

−∞
e−c|s| ds = C

√
	√

θe
=: �0,

where, we recall from Proposition 3.5 that c = 4
√

θ. ��
Proof of Theorem 1.2 As discussed in the introduction, the proof of Theorem 1.2 is an imme-
diate consequence of (4.1). ��
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5 The Proof of Theorem 1.5 and Theorem 1.6

Webegin by summarizing several properties of hν that will be needed in the proof of Theorem
1.5.

Lemma 5.1 Let ν ∈ S
N−1 ∩ Q

N . There exist T0 ∈ N and unit vectors {νi }N−1
i=1 ⊆ S

N−1 ∩
Q

N such that {ν1, · · · , νN−1, νN := ν} form an orthonormal basis for RN . Moreover, the
coefficient a is T0 periodic in the directions {νi }Ni=1, and hν is T0 periodic in the directions

{νi }N−1
i=1 .

Proof By an appeal to [14,Proposition 3.5], there exist ν1, · · · , νN−1 ∈ Q
N ∩ S

N−1 and
T0 ∈ N such that {νi }Ni=1 is an orthonormal basis of RN , and a is T0−periodic in each of the
directions {νi }Ni=1. We prove the periodicity of hν in the directions {νi }N−1

i=1 . We fix x ∈ R
N ,

and show that for any i ∈ {1, · · · , N − 1},
hν(x + kT0νi ) = hν(x), for all k ∈ Z.

We note that if x · ν = 0, then the estimate is automatic since both sides of the equation are
0. Without loss of generality, we may assume that x · ν > 0 and k ≥ 0. Let y ∈ �ν and
γ : [0, 1] → R

N be such that γ (0) = x, γ (1) = y, and
´ 1
0

√
a(γ (t))|γ̇ (t)| dt = hν(x). The

existence of such a geodesic follows by classical arguments. For each νi , i = 1, . . . , N − 1,
we define γ̃ : [0, 1] → R

N by γ̃ (t) := γ (t) + kT0νi . Since νi ⊥ ν, we have γ̃ (1) · ν =
γ (1)·ν+kT0νi ·ν = y ·ν = 0, which implies γ̃ (1) ∈ �ν .We also note that γ̃ (0) = x+kT0νi .
Hence, by the T0 periodicity of a with respect to νi , we have

hν(x + kT0νi ) = d√
a(x + kT0νi , �ν) ≤ d√

a(x + kT0νi , y + kT0νi )

≤
ˆ 1

0

√

a(γ̃ (t))| ˙̃γ (t)| dt =
ˆ 1

0

√

a(γ (t) + kT0νi )|γ̇ (t)| dt

=
ˆ 1

0

√

a(γ (t))|γ̇ (t)| dt = d√
a(x, y) = hν(x).

The reverse inequality follows by a symmetric argument. ��
We now make a slight digression to almost periodic functions, which will play an important
role in the characterization of the asymptotic behaviour of hν (see Lemma 5.8). When ν ∈
S
N−1 ∩ Q

N , we know from Lemma 5.1 that there is an orthonormal basis {ν1, · · · , νN :=
ν} ⊆ S

N−1 ∩ Q
N , and T0 = T0(ν) ∈ N, such that hν is T0−periodic in the transverse

directions {νi }N−1
i=1 . This periodicity yields an averaging property which we will exploit in

the proof of Lemma 5.8. When ν ∈ S
N−1\QN , it turns out that an averaging property still

holds, using the theory of Bohr almost periodic functions. For the convenience of the reader,
we recall the basic notions of the theory of Bohr almost periodic functions, referring to [5]
for details.

Definition 5.2 Acontinuous bounded function g : Rd → R is said to beBohr almost periodic
if for every η > 0, there exists an η−almost period τ > 0 such that for any α ∈ R

d , there
exists ζ ∈ α + τ�d with

sup
x∈Rd

|g(x + ζ ) − g(x)| ≤ η, (5.1)

where �d is any d-dimensional unit cube.
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Remark 5.3 In the sequel, we use almost periodicity primarily with d = N − 1. Continuous
periodic functions are examples of Bohr almost periodic functions (by choosing τ larger than
the period, since then (5.1) holds with η = 0).

An important feature of Bohr almost periodic functions, which we will use in the proof of
Lemma 5.8, is the existence of the so-called mean value. To be precise, if f is a Bohr almost
periodic function, then the limit

μ( f ) := lim
T→∞

1

T d

ˆ
T�d

f (y) dy = lim
T→∞

ˆ
�d

f (T y) dy (5.2)

exists and is finite.

Remark 5.4 Inwhat follows,Wewill use the definitionofBohr almost periodicitywith various
choices of the unit cube �d , as it turns out that the definition, and the mean value defined
above, are independent of the choice of the unit cube�d . To be precise, let {Vk}∞k=1 ⊆ R

N be
a sequence of bounded domains with Ld(Vk) → ∞ as k → ∞, and let {V h

k } denote the set
of points in Vk at distance not exceeding h from the boundary ∂Vk . If ∂Vk is regular enough

such that there exists a sequence (hk)∞k=1 with hk → 0 and limk→∞
Ld (V

hk
k )

Ld (Vk )
= 0, then the

limit in (5.2) is equal to

μ( f ) = lim
k→∞

 
Vk

f (y) dy.

For a proof of this assertion, see [37,Proposition 1.9].

It is well known that f is Bohr almost periodic if and only if f has a uniformly convergent
Bochner-Fourier series (see [5]). In particular, if f is Bohr almost-periodic, then there exist an
at most countable set� ⊆ R

d of “frequencies”, and a square-summable sequence { fλ}λ∈� ⊆
C of “Fourier modes”, such that

f (x) =
∑

λ∈�

fλe
iλ·x for x ∈ R

d , (5.3)

and the sum on the right is uniform and absolute. The coefficients fλ are given by fλ :=
μ( f e−iλ·(·)) for μ as in (5.2), and � ⊆ R

d is the at most countable set for which fλ �= 0. In
particular, this implies that if f is Bohr almost periodic, and

μ( f (·)e−iλ·(·)) = 0 for every λ ∈ R
d , (5.4)

then f ≡ 0.
We will also use the notion of two-scale convegence for Bohr almost periodic functions

[9,Definition 4.1, Proposition 4.6]. We introduce the space B1 as the closure of Bohr almost
periodic functions with respect to the semi-norm

[ f ] := lim
T→∞

1

T d

ˆ
T�d

| f (y)| dy = μ(| f |).

Definition 5.5 Let � ⊆ R
d be open. We say that a sequence {uη} ⊆ L1

loc(�) Bohr two-
scale converges to u ∈ L1

loc(�;B1) if for every bounded function g : � × R
d → R that is

continuous in the first variable and Bohr almost periodic in the second variable, we have

lim
η→0

ˆ
�

uη(x)g

(

x,
x

η

)

dx =
ˆ

�

μ(u(x, ·)g(x, ·)) dx .
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Remark 5.6 It is proven in [9,Proposition 4.6] that if f is a Bohr almost periodic function,
and Tm → ∞ is a sequence of positive numbers, then fm(·) := f (Tm ·) Bohr two-scale
converge to μ( f ) in any bounded open set � ⊆ R

d .

Wenext show that for each ν ∈ S
N−1, the function x �→ hν (x)

x ·ν satisfy Bohr almost periodicity
as functions of the orthogonal directions.

Lemma 5.7 Let ν ∈ S
N−1, and write x ∈ R

N as x = x ′ +(x ·ν)ν ∼ (x ′, x ·ν). The functions
x ′ ∈ �ν �→ a(x ′, s) and x ′ ∈ �ν �→ hν (x ′,s)

s are Bohr-almost periodic for every s ∈ R \ {0},
uniformly in s. To be precise, for every η > 0 there exists τ > 0, independent of s, such that
for any α ∈ �ν , there exists ζ ∈ α + (τQν ∩ �ν) such that

sup
x ′∈�ν

|a(x ′ + ζ, s) − a(x ′, s)| ≤ η, (5.5)

and

sup
x ′∈�ν

∣

∣

∣

∣

hν(x ′ + ζ, s)

s
− hν(x ′, s)

s

∣

∣

∣

∣

≤
√

	

θ
η. (5.6)

Proof We recall �ν := Qν ∩�ν , and throughout the proof of the Lemma we use this choice
of an (N − 1)−dimensional unit cube �N−1 from the definition of Bohr-almost periodicity.

By a mollification, if needed, we may assume a is smooth. This represents no loss of
generality since Bohr almost periodic functions are closed under uniform limits. As a is
T
N−periodic and smooth, it admits an absolutely and uniformly convergent Fourier series

a(x) =
∑

k∈ZN

ake
2π ik·x , x ∈ R

N .

Upon a rotation, we may express x = (x ′, x · ν) and k = (k′, k · ν), and take the sum over
another countable family �N which is isomorphic to Z

N . We let xN = x · ν = s ∈ R \ {0}
be fixed. Defining bk := ake2π i(k·ν)s = ake2π ikN xN , we find that |bk | = |ak |, and we have

a(x ′, s) =
∑

k′∈�N−1

(
∑

k∈�N :
k=(k′,·)

bk
)

e2π ik
′·x ′

, x ′ ∈ �ν.

Since the series on the right converges uniformly and absolutely, it follows that a(·, s) is Bohr
almost periodic. In particular, for each η > 0 there exists τ > 0 such that for every α ∈ �ν,

there exists ζ ∈ α + τ�ν satisfying

sup
x ′∈�ν

|a(x ′ + ζ, s) − a(x ′, s)| ≤ η,

and this proves (5.5). The property of almost periodicity is preserved under composition with
uniformly continuous functions. As a consequence, for each η > 0 there exists τ > 0 such
that for all α ∈ �ν , there exists ζ ∈ α + τ�ν with

sup
x ′∈�ν

|√a(x ′ + ζ, s) −√a(x ′, s)| ≤ η. (5.7)

The proof of almost periodicity of hν (·,s)
s follows a similar argument as the proof of Lemma

5.1. Fix x ∈ R
N and, without loss of generality, assume that x · ν > 0. Let y ∈ �ν and

γ : [0, 1] → R
N be such that γ (0) = x, γ (1) = y and

´ 1
0

√
a(γ (t))|γ̇ (t)| dt = hν(x). Let
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ζ ∈ �ν , and we define γ̃ : [0, 1] → R
N by γ̃ (t) := γ (t) + ζ. Note that as ζ ⊥ ν, we have

γ̃ (1) · ν = γ (1) · ν + ζ · ν = y · ν = 0, so that γ̃ (1) ∈ �ν. Moreover, γ̃ (0) = x + ζ, and so

hν(x + ζ ) ≤ d√
a(x + ζ, y)

≤
ˆ 1

0

√

a(γ̃ (t))| ˙̃γ (t)| dt

=
ˆ 1

0

√

a(γ (t))|γ̇ (t)| dt +
ˆ 1

0

(
√

a(γ (t) + ζ ) −√a(γ (t))
)|γ̇ (t)| dt

= hν(x) +
ˆ 1

0

(
√

a(γ (t) + ζ ) −√a(γ (t))
)|γ̇ (t)| dt .

Choose ζ ∈ �ν as in (5.7), and conclude that

|hν(x + ζ ) − hν(x)| ≤ η

ˆ 1

0
|γ̇ (t)| dt ≤ η√

θ

ˆ 1

0

√

a(γ (t))|γ̇ (t)| dt

≤ η√
θ

√
	|x · ν|, (5.8)

where in the last inequality we have used the definition of γ (t) and its relation to hν(x),
as well as (2.3). The inequality (5.6) now follows upon diving (5.8) through by |x · ν|, and
noting that ζ · ν = 0. ��

The next lemma is crucial for the proof of Theorem 1.5, and requires various properties
of hν which we have previously established.

Lemma 5.8 Fix ν ∈ S
N−1, and let {Tm}m∈N ⊆ (0,∞) with Tm → ∞ as m → ∞. For

m ∈ N, consider the functions km : RN → R defined as

km(·) := 1

Tm
hν(Tm ·). (5.9)

There exist a constant c(ν) ∈ [√θ,
√

	] and a subsequence of {Tm}m∈N (which we do not
relabel) such that for any compact set K ⊆ R

N \ �ν , and for every α > 0, there exists
M = M(α, K ) ∈ N such that if m ≥ M, then

∣

∣km(z) − c(ν)z · ν
∣

∣ ≤ α|z · ν| for all z ∈ K . (5.10)

Proof We show that {km}m∈N is uniformly bounded and uniformly Lipschitz, from which we
obtain local uniform convergence (up to a subsequence) in a strong (uniform) topology. We
further use averaging associated toweak convergence arguments to identify the limit in aweak
topology. Carrying out this program involves some ideas using polynomial approximation
which might be of independent interest in this context. We break up the proof in several steps.

Step A: We show that there exists a Lipschitz continuous function k : RN → R and a
subsequence of {km} (which we do not relabel) such that for any compact K ⊆ R

N \�ν and
for every α > 0, there exists M = M(α, K ) ∈ N such that, if m ≥ M ,

|km(z) − k(z)| ≤ α|z · ν| for all z ∈ K . (5.11)

As ν is fixed, we define zN := z · ν and write z = (z′, zN ) = (z′, z · ν) throughout the rest
of the proof. By (2.3), for z ∈ R

N \ �ν we have
∣

∣

∣

∣

km(z)

zN

∣

∣

∣

∣

=
∣

∣

∣

∣

1

TmzN
hν(Tmz)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

√
	TmzN
TmzN

∣

∣

∣

∣

∣

= √
	. (5.12)
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By Lemma 2.2 and (H2), km is Lipschitz with

‖∇km‖L∞ = ‖∇hν‖L∞ ≤ √
	. (5.13)

Combining (5.12) and (5.13), we deduce that for a point of differentiability z ∈ R
N \ �ν ,

∣

∣

∣

∣

∇
(

km(z)

zN

)∣

∣

∣

∣

=
∣

∣

∣

∣

∇
(

km(z)

z · ν

)∣

∣

∣

∣

=
∣

∣

∣

∣

∇km(z)(z · ν) − km(z)ν

(z · ν)2

∣

∣

∣

∣

≤ 2
√

	

|z · ν| = 2
√

	

|zN | . (5.14)

In view of (5.12) and (5.14), the Arzelà-Ascoli theorem yields that there exist a subse-
quence of {km} (not relabeled) and a continuous function q̃ : RN \ �ν → R such that, for
every compact set K ⊆ R

N \ �ν ,

lim
m→∞ sup

z∈K

∣

∣

∣

∣

km(z)

zN
− q̃(z)

∣

∣

∣

∣

= 0. (5.15)

Defining now

k(z) :=
{

q̃(z)zN for z ∈ R
N \ �ν,

0 for z ∈ �ν,

we see that (5.11) follows from (5.15).
Step B: Fix R > 1. We argue that hν can be approximated on R

N−1 × [−R, R] by a
polynomial in the last variable. In particular, we will show that this polynomial belongs to
the class

A :=
⎧

⎨

⎩

g(z′, zN ) :=
p
∑

j=0

b j (z
′)z jN : p ∈ N, b j ∈ AP(RN−1)

⎫

⎬

⎭

,

where AP(RN−1) is the set of Bohr almost periodic functions in RN−1. In what follows, we
write z ∈ R

N as z = (z′, zN )with z′ ∈ �ν ∼ R
N−1, and |zN | ≤ R.Let f : RN−1×[0, 1] →

R be defined by

f (z′, zN ) := hν

(

z′, 2RzN − R
)

.

Fix z′ ∈ R
N−1 such that (z′, 0) ∈ �ν, and consider the functions zN �→ f (z′, zN ). Through-

out the rest of StepB,we allowC = C(N , θ,	) in every step.Define ˜f : RN−1×[0, 1] → R,
by

˜f (z′, zN ) : = f (z′, zN ) − f (z′, 0) − zN
(

f (z′, 1) − f (z′, 0)
)

= hν(z
′, 2RzN − R) − hν(z

′,−R) − zN (hν(z
′, R) − hν(z

′,−R)). (5.16)

We have that ˜f (z′, 0) = ˜f (z′, 1) = 0, and we can extend this function to all ofRN by setting
˜f = 0 off of RN−1 × [0, 1].

We now proceed nearly identically to the proof of the Stone-Weierstrass Theorem (see
[34,Page 160]). For j ∈ N0, we define the functions g j : RN → R as

g j (z
′, zN ) := C j

ˆ 1

−1

˜f (z′, zN + t)(1 − t2) j dt, (5.17)
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where C j are chosen so that ˆ 1

−1
C j (1 − t2) j dt = 1, (5.18)

and, as shown in [34],
|C j | ≤ C

√

j . (5.19)

Since ˜f ≡ 0 in R
N−1 × (R\[0, 1]), we have that for any z′ ∈ R

N−1 and zN ∈ [0, 1],

g j (z
′, zN ) = C j

ˆ 1−zN

−zN

˜f (z′, zN + t)(1 − t2) j dt = C j

ˆ 1

0

˜f (z′, t)(1 − (t − zN )2) j dt,

which is a polynomial in zN with continuous coefficients depending on z′. Recall that by
Lemma 5.7, hν (·,s)

s is Bohr almost periodic, uniformly, for all s �= 0. In particular, this
implies that hν(·, s) is Bohr almost periodic (the case s = 0 being trivial since hν(·, 0) = 0).
Note that for every zN ∈ [0, 1], ˜f (·, zN ) defined by (5.16) is a linear combination of Bohr
almost periodic functions, which is still Bohr almost periodic. We infer that g j (·, zN ), whose
coefficients are given by integration in the N th variable of Bohr almost periodic functions
(which does not affect the first N−1 variables), is Bohr almost periodic for every zN ∈ [0, 1].

For z ∈ R
N−1 × [0, 1], we define

M(z) = M(z′, zN ) := max
t∈[−1,1] |˜f (z

′, zN + t)|.

By (5.16) and the Lipschitz continuity of hν (Lemma 2.2 and (H2)), we have

M(z) = max
t∈[−1,1] |hν(z

′, 2R(zN + t) − R) − hν(z
′, R)

− (zN + t)(hν(z
′, R) − hν(z

′,−R))|
≤ max

t∈[−1,1]
√

	 |2R(zN + t − 1)| + |zN + t | 2√	R

= CR (zN + 1) . (5.20)

Fix η > 0. Note that by Lemma 2.2, f (and hence ˜f ) is Lipschitz continuous and, in
particular, f (and hence ˜f ) is uniformly continuous. Hence, choose δ ∈ (0, 1) such that for
any x, y ∈ R

N with |x − y| ≤ δ, we have |˜f (x) − ˜f (y)| ≤ η
2 .

By (5.17), (5.18), the uniform continuity of ˜f , (5.20), and (5.19), we find that at z ∈
R

N−1 × [0, 1],

|˜f (z) − g j (z)| =
∣

∣

∣

∣

C j

ˆ 1

−1

(

˜f (z′, zN ) − ˜f (z′, zN + t)
)

(1 − t2) j dt

∣

∣

∣

∣

≤ C j

ˆ
(−1,1)\(−δ,δ)

∣

∣ ˜f (z′, zN + t) − ˜f (z′, zN )
∣

∣ (1 − t2) j dt

+ C j

ˆ δ

−δ

∣

∣ ˜f (z′, zN + t) − ˜f (z′, zN )
∣

∣

(

1 − t2
) j

dt

≤ C j

ˆ
(−1,1)\(−δ,δ)

2M(z)(1 − t2) j dt + C j

ˆ δ

−δ

η

2
(1 − t2) j dt

≤ CM(z)
√

j(1 − δ2) j + η

2

≤ CR
√

j(1 − δ2) j (zN + 1) + η

2
.
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Taking j sufficiently large, using the fact that R > 1, and that

lim
j→∞
√

j(1 − δ2) j = 0,

we can find gη ∈ A such that, for all z ∈ R
N−1 × [0, 1],

|˜f (z) − gη(z)| ≤ Rη(zN + 1).

By (5.16), this implies that for all z ∈ R
N−1 × [0, 1],

∣

∣hν(z
′, 2RzN − R) − hν(z

′,−R) − zN (hν(z
′, R) − hν(z

′,−R)) − gη(z)
∣

∣≤ Rη(zN + 1).

Combining the constant term and the linear term in zN into the polynomial gη(z),we deduce
that there is a polynomial gη,R ∈ A such that

∣

∣

∣hν(z
′, 2RzN − R) − gη,R(z)

∣

∣

∣ ≤ Rη(zN + 1) for all z ∈ R
N−1 × [0, 1].

By the affine transformation in the N th variable (zN �→ 1
2R (zN +R)), we obtain a polynomial

g̃η,R ∈ A such that
∣

∣

∣hν (z) − g̃η,R(z)
∣

∣

∣ ≤ η

2
(zN + 3R) for all z ∈ R

N−1 × [−R, R]. (5.21)

Step C. In this step, we argue that the linear growth of hν at infinity implies that we
may restrict to polynomial approximations that are linear in zN . Our strategy to make this
reduction will be to obtain a single “infinite polynomial” which pointwise approximates the
bounded function z ∈ R

N\�ν �→ hν (z)
zN

(rather than on sets of the form R
N−1 × [−R, R],

in which the coefficients of the polynomial approximation might depend on R).
To this end, let {τm}m denote an increasing sequence of positive numbers with τm → ∞

as m → ∞. We define

A−1 :=
⎧

⎨

⎩

g(z′, zN ) :=
p
∑

j=−1

˜b j (z
′)z jN : p ∈ N,˜b j ∈ AP(RN−1)

⎫

⎬

⎭

.

Fix η > 0. On the compact interval [−τm,− 1
τm

] ∪ [ 1
τm

, τm], let pm ∈ A−1 as in Step B be
chosen such that

∣

∣

∣

∣

hν(z′, zN )

zN
− pm(z)

∣

∣

∣

∣

≤ η

2m
z ∈ R

N−1 ×
[

−τm,− 1

τm

]

⋃

[

1

τm
, τm

]

. (5.22)

We set q0 := p1, and qm := pm+1 − pm, for m ∈ N. Then

pm+1(z) =
m
∑

n=0

qn(z),

and thus, pointwise, we have

hν(z)

zN
=

∞
∑

n=0

qn(z) + O(η), z ∈ R
N−1 × (R \ 0) . (5.23)

Next, we show that on sets of the formR
N−1×[c, d], 0 < c < d < ∞, the series in (5.23)

converges uniformly and absolutely. Indeed, if [c, d] ⊂ (0,∞), then for all m sufficiently
large and for all z ∈ R

N−1 × [c, d], we have by (5.22)
∣

∣

∣

∣

hν(z)

zN
− pm(z)

∣

∣

∣

∣

≤ η

2m
,
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and so,

|qm(z)| ≤
∣

∣

∣

∣

pm+1(z) − hν(z)

zN

∣

∣

∣

∣

+
∣

∣

∣

∣

hν(z)

zN
− pm(z)

∣

∣

∣

∣

≤ η

2m
+ η

2m+1 .

It follows that there exists M ∈ N large so that

∞
∑

m=M

|qm(z)| ≤ 2
∞
∑

m=M

η

2m
≤ Cη,

and thus the series
∑∞

m=0 qm(z) converges uniformly and absolutely to z �→ hν (z)
zN

on the set

R
N−1 ×[c, d]. As {pm}m ⊂ A−1, we have also {qm}m ⊂ A−1. Collecting powers of zN and

rearranging, using the absolute summability we may rewrite the series in (5.23) as

hν(z)

zN
=

∞
∑

j=−1

˜b j (z
′)z jN + O(η),

where the coefficients˜b j are Bohr almost periodic, and therefore, bounded. Testing this with
z = Tmζ, for ζ ∈ Qν with ζN = 1, we get

hν(Tmζ )

Tm
=

∞
∑

j=−1

˜b j (Tmζ ′)T j
m + O(η).

We claim that each of the terms

sup
m

|˜b j (Tmζ ′)T j
m | ≤ C j , (5.24)

for some constant C j > 0, for every j ≥ 1. To see this, as the infinite series above is conver-

gent for each m, there exists J0(m) such that for all j ≥ J0(m), we have |˜b j (Tmζ ′)T j
m | ≤ 1,

and
∣

∣

∣

∑

j≥J0(m)
˜b j (Tmζ ′)T j

m

∣

∣

∣ ≤ 1. It follows by the triangle inequality that

sup
m

∣

∣

∣

∣

∣

∣

∑

j≤J0(m)

˜b j (Tmζ ′)T j
m

∣

∣

∣

∣

∣

∣

≤ C . (5.25)

As the coefficients ˜b j are bounded, by Bohr almost periodicity, (5.25) implies the claim in
(5.24).

Having proven the claim in (5.24), it follows that the˜b j are Bohr almost periodic functions
that decay at infinity. From this, we claim that each of the˜b j must vanish identically. Indeed,

for any j ≥ 1, since |˜b j (Tmζ ′)| ≤ C j

T j
m
, squaring, and integrating over the cube�ν = �ν∩Qν,

and then sending m → ∞, we find that

μ(˜b2j ) = lim
m→∞

ˆ
�ν

|˜b j (Tmζ ′)|2 dζ ′ = 0,

which, together with (5.4), implies that˜b j ≡ 0 for all j ≥ 1. In particular, we may reduce
(5.21) to a linear approximation, so that for every η > 0 and R > 1 there exist Bohr almost
periodic functions bη

0 , b
η
1 with

|hν(z) − bη
0(z

′) − bη
1(z

′)zN | ≤ η(|zN | + R), for all z ∈ R
N−1 × [−R, R]. (5.26)
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Recalling (5.9), by (5.26) we have for z ∈ R
N−1 × [−R, R],

∣

∣

∣

∣

km(z) − 1

Tm
bη
0(Tmz

′) − bη
1(Tmz

′)zN
∣

∣

∣

∣

= 1

Tm

∣

∣hν(Tmz) − bη
0(Tmz) − bη

1(Tmz
′)TmzN

∣

∣

≤ η

Tm
(|TmzN | + R) = η|zN | + ηR

Tm
. (5.27)

With the choice of z = (z′, 0) ∈ �ν in (5.26) and (5.27), respectively, we conclude that

|bη
0(z

′)| ≤ ηR and
1

Tm
|bη

0(Tmz
′)| ≤ ηR

Tm
for all z′ ∈ R

N−1. (5.28)

From (2.3), (5.26), and (5.28), we see that for zN ∈ (0, R],

bη
1(z

′) = 1

zN
bη
1(z

′)zN ≤ 1

zN

[

hν(z) − bη
0(z

′) + η(|zN | + R)
] ≤ √

	 + η

(

1 + 2R

zN

)

,

and

bη
1(z

′) = 1

zN
bη
1(z

′)zN ≥ 1

zN

[

hν(z) − bη
0(z

′) − η(|zN | + R)
] ≥ √

θ − η

(

1 + 2R

zN

)

.

Taking zN = R, we infer that
√

θ − 3η ≤ bη
1(z

′) ≤ √
	 + 3η. (5.29)

Since bη
1 is Bohr uniformly almost periodic, it follows that the limit

b
η

1 := μ(bη
1) = lim

T→∞
1

T N−1

ˆ
T�ν

bη
1(z

′) dz′ = lim
T→∞

ˆ
�ν

bη
1(T z

′) dz′ (5.30)

exists. From (5.29), it follows that
√

θ − 3η ≤ b
η

1 ≤ √
	 + 3η. This implies that up to a

subsequence (not relabeled),

b
η

1 −−−→
η→0

c(ν) (5.31)

for some c(ν) ∈ [√θ,
√

	]. Fix α > 0. As the functions bη
1(Tm ·) Bohr two-scale converge

to b
η

1 as m → ∞(see Remark 5.6), for any fixed T > 1, using Definition 5.5 in the domain
� = T�ν, this entails that for every test function ψ : T�ν × R

N → R, that is continuous
in the first variable and Bohr almost periodic in the second variable, we have

lim
m→∞

ˆ
T�ν

bη
1(Tmz

′)ψ(z′, Tmz′) dz′ =
ˆ
T�ν

μ
(

b
η

1ψ(z′, ·)) dz′ = b
η

1

ˆ
T�ν

μ(ψ(z′, ·)) dz′.

In what follows, we use this frameworkwith the choice of test functions given byψ(z′, w) :=
e−iχ ·z′ , for χ ∈ R

N−1, which are independent of w. For such a choice,

lim
m→∞

ˆ
T�ν

bη
1(Tmz

′)e−iχ ·z′ dz′ = b
η

1

ˆ
T�ν

e−iχ ·z′ dz′. (5.32)

Step D. To prove (5.10), in view of Step A it remains to show that k(z) = c(ν)z · ν for
all z ∈ R

N . We note that this is immediate for all z ∈ �ν , by definition of k(z). We recall
the function z �→ q̃(z) = k(z)

zN
from Step A, and notice that being the locally uniform limit

of Bohr almost periodic functions, q̃(·, zN ) is Bohr almost periodic. Fix R > 0 and also fix
|zN | ≤ R, zN �= 0. Our strategy is to show that for all χ ∈ R

N−1, we have

μ
(

(̃q(·, zN ) − c(ν))e−iχ ·(·)) = 0, (5.33)
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where, as in (5.2),μ denotes the mean value of the almost periodic argument. If we can verify
(5.33), then by (5.4) we deduce that q̃(z′, zN ) ≡ c(ν). As zN is arbitrary on [−R, R] \ {0},
we conclude that k(z) = c(ν)z · ν for all z ∈ R

N−1 × [−R, R].
Let α > 0, and for T > 1 fixed let K := T�ν × {zN } be a compact subset of {z · ν > 0},

and let M = M(α, K ) be as in (5.11). Let m0 ≥ M be such that for all m ≥ m0, in view of
(5.32),

∣

∣

∣

∣

ˆ
T�ν

bη
1(Tmz)e

−iχ ·z′ dz′ − b
η

1

ˆ
T�ν

e−iχ ·z′ dz′
∣

∣

∣

∣

< α. (5.34)

For m ≥ m0, by (5.11), (5.27), (5.28), and (5.34), we have
∣

∣

∣

∣

1

T N−1

ˆ
T�ν

(

q̃(z′, zN ) − c(ν)
)

e−iχ ·z′ dz′
∣

∣

∣

∣

≤
∣

∣

∣

∣

1

T N−1

ˆ
T�ν

(

k(z′, zN )

zN
− km(z)

zN

)

e−iχ ·z′ dz′
∣

∣

∣

∣

+
∣

∣

∣

∣

1

T N−1

ˆ
T�ν

(

km(z)

zN
− 1

Tm

bη
0(Tmz

′)
zN

− bη
1(Tmz

′)
)

e−iχ ·z′ dz′
∣

∣

∣

∣

+
∣

∣

∣

∣

1

T N−1

ˆ
T�ν

1

Tm

bη
0(Tmz

′)
zN

e−iχ ·z′ dz′
∣

∣

∣

∣

+
∣

∣

∣

∣

1

T N−1

ˆ
T�ν

(

bη
1(Tmz

′) − b
η

1

)

e−iχ ·z′ dz′
∣

∣

∣

∣

+ |bη

1 − c(ν)|
≤ α + η

Tm
+ 2ηR

Tm |zN | +
∣

∣

∣

∣

1

T N−1

ˆ
T�ν

(

bη
1(Tmz

′) − b
η

1

)

e−iχ ·z′ dz′
∣

∣

∣

∣

+ |bη

1 − c(ν)|

= α + C

(

η

Tm
+ ηR

Tm |zN |
)

+ α

T N−1 + |bη

1 − c(ν)|.

We first send m → ∞, so that Tm → ∞. Then letting T → ∞, we obtain that
∣

∣

∣μ
(

(

q̃(·, zN ) − c(ν)
)

e−iχ ·(·))
∣

∣

∣ ≤ α + |bη

1 − c(ν)|.
Sending η, α → 0 completes the proof of (5.33), where we used (5.31).

StepE.The foregoing argument shows that k(z) = c(ν)z ·ν for all z ∈ (RN−1×[−R, R]).
As R is arbitrary, and k from Step A is defined in R

N (i.e., independently of any truncation
R), we conclude that c(ν) is independent of R and

k(z) = c(ν)z · ν.

Thus, for all K ⊆ R
N \ �ν compact,

lim
m→∞ sup

z∈K

∣

∣

∣

∣

km(z)

zN
− c(ν)

∣

∣

∣

∣

= 0,

and this implies (5.10). ��
For notational convenience, we define H : RN × R

N → R by

H(p, y) := 1√
a(y)

|p|.

With this notation, (1.10) yields that, in the viscosity sense,
{

H(∇km, Tmx) = 1 in Hν,

km(x) = 0 on �ν.
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We also point out that H(·, y) is uniformly Lipschitz continuous. Indeed, by (H2), we have

|H(p, y) − H(q, y)| = 1√
a(y)

|p − q| ≤ 1√
θ

|p − q|. (5.35)

Throughout the rest of the paper, we take all equalities and inequalities of PDEs to be in
the viscosity sense, and refer the reader to [12, 13] for an overview of viscosity solutions.

We next present a comparison principle which is specifically tailored for the proof of
Theorem 1.5. A more general version of this result is stated in [21,Lemma 3.3] without proof
(although the proof essentially follows the same lines as [3,Lemma 3.1].) For completeness,
we provide a self-contained proof of the result we need here:

Lemma 5.9 Let η > 0, and let u, v ∈ C(RN ) satisfy
{

H(ν + ∇u, y) < H(ν + ∇v, y) − η√
θ

in Hν,

u(y) ≤ v(y) on �ν,
(5.36)

with

lim inf|y|→∞
v(y) − u(y)

|y| ≥ −η. (5.37)

Then
u(y) ≤ v(y) in Hν .

Proof Due to the strict inequality in (5.36), there exists ε > 0 so that

H(ν + ∇u, y) ≤ H(ν + ∇v, y) − η + ε√
θ

in Hν . (5.38)

For each R > 1, we define

ψR(y) := (R2 + |y|2)1/2 − R and vR(y) := v(y) + (η + ε)ψR(y).

Notice that
‖∇ψR‖L∞(RN ) ≤ 1 and lim|y|→∞ |y|−1ψR(y) = 1. (5.39)

Owing to (5.35), (5.38), and (5.39) we obtain

H(ν + ∇vR, y) ≥ H(ν + ∇v, y) − (η + ε)√
θ

‖∇ψR‖L∞(RN )

= H(ν + ∇v, y) − (η + ε)√
θ

≥ H(ν + ∇u, y) in Hν .

Moreover, since vR ≥ v, we have

u(y) ≤ vR(y) on �ν, (5.40)

and by (5.37) and superadditivity of lim inf, we find

lim inf|y|→∞
vR(y) − u(y)

|y| = lim inf|y|→∞
v(y) + (η + ε)ψ R(y) − u(y)

|y|
≥ lim inf|y|→∞

v(y) − u(y)

|y| + (η + ε) lim|y|→∞
ψR(y)

|y|
≥ −η + (η + ε) = ε > 0.
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This implies that for |y| sufficiently large, the numerator must be nonnegative, and thus
there is a large ball BM so that

u(y) ≤ vR(y) on Hν \ BM . (5.41)

We may now apply the comparison principle for the Dirichlet problem of stationary
Hamilton-Jacobi equations on bounded domains [13,Theorem 3.3] to conclude that by (5.41),
the comparison principle, and (5.40),

sup
Hν

(

u(y) − vR(y)
)

+ = sup
BM∩Hν

(

u(y) − vR(y)
)

+ ≤ max
∂BM∩Hν

(

u(y) − vR(y)
)

+

≤ sup
�ν

(

u(y) − vR(y)
)

+ = 0.

This yields that
u(y) ≤ vR(y) in Hν .

Finally, asψR(y) → 0 pointwise as R → ∞, we have vR(y) → v(y) pointwise as R → ∞,
independent of η and ε, and thus

u(y) ≤ v(y) in Hν .

��
In order to conclude the statement of Theorem 1.5 along the whole sequence T → ∞,

we refer to a result of the famous (unpublished) work of Lions-Papanicolaou-Varadhan [24],
concerning the existence of periodic correctors.

Theorem 5.10 [24,Theorem 1] For each p ∈ R
N , there exists a unique number H(p) and

u ∈ Lip(TN ) (the set of Lipschitz continuous and TN -periodic functions) so that u solves

H(p + ∇u, x) = H(p) in R
N (5.42)

in the viscosity sense.

We note that the function u satisfying (5.42) is clearly not unique (for any M ∈ R, the
function u + M is also a solution to (5.42)), but emphasize that Theorem 5.10 guarantees
that H(p) is unique.

Equipped with Lemma 5.8, Lemma 5.9, and Theorem 5.10, we now present the proof of
Theorem 1.5.

Proof of Theorem 1.5 We first argue that the value of c(ν) must be unique in Hν . Let us
suppose, for the purposes of contradiction, that c(ν) is not unique, and define

c1(ν) : = inf
{

c(ν) ∈ [√θ,
√

	] : ∃ a subsequence {Tm} such that

lim
Tm→∞ km(x) = c(ν)x · ν loc. uniformly in Hν

}

, (5.43)

and

c2(ν) : = sup
{

c(ν) ∈ [√θ,
√

	] : ∃ a subsequence {Tm} such that

lim
Tm→∞ km(x) = c(ν)x · ν loc. uniformly in Hν

}

.
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By definition, c1(ν) < c2(ν). Setting

w1(y) := hν(y) − c1(ν)(y · ν) and w2(y) := hν(y) − c2(ν)(y · ν),

we have

H(c1(ν)ν + ∇w1, y) = 1 and H(c2(ν)ν + ∇w2, y) = 1 in Hν .

By 1-homogeneity of H(·, y), this implies that for w̃1(y) := c1(ν)−1w1(y) and w̃2(y) :=
c2(ν)−1w2(y), we have

H(ν + ∇w̃2, y) = 1

c2(ν)
<

1

c1(ν)
= H(ν + ∇w̃1, y) in Hν . (5.44)

We now claim for any K ⊆ Hν compact,

lim sup
T→∞

1

T
w2(T x) ≤ 0 and lim inf

T→∞
1

T
w1(T x) ≥ 0 for all x ∈ K . (5.45)

Indeed, by Lemma 5.8, we know that for any sequence T → ∞, there exists a subsequence
such {Tm} and c̄(ν) ∈ [√θ,

√
	] so that T−1

m hν(Tmx) → c̄(ν)x · ν as Tm → ∞, and
c̄(ν) ∈ [c1(ν), c2(ν)]. This, in particular, implies that for any convergent subsequence,

T−1
m w1(Tmx) = T−1

m hν(Tmx) − c1(ν)x · ν

= T−1
m hν(Tmx) − c̄(ν)x · ν + [c̄(ν) − c1(ν)](x · ν)

≥ T−1
m hν(Tmx) − c̄(ν)x · ν,

where the right hand side tends to 0 asm → ∞. Taking lim inf of both sides, we see that every
subsequential limit, hence the full sequence, satisfies the second assertion of (5.45). The other
inequality in (5.45) follows by an analogous argument. In particular, taking x ∈ S

N−1 ∩ Hν

and y = T x , we have

lim sup
|y|→∞

w̃2(y)

|y| ≤ 0 and lim inf|y|→∞
w̃1(y)

|y| ≥ 0. (5.46)

By Theorem 5.10, let u be the periodic corrector corresponding to H(ν), so that
⎧

⎨

⎩

H(ν + ∇u, y) = H(ν) in R
N ,

lim|y|→∞
u(y)
|y| = 0. (5.47)

We consider two cases: Case 1: H(ν) ∈
[

1
c2(ν)

, 1
c1(ν)

]

. Without loss of generality, we

will assume H(ν) < 1
c1(ν)

(if not, then we can repeat the following argument using that

H(ν) > 1
c2(ν)

). We claim that there exists η > 0 so that the hypotheses of Lemma 5.9 are
satisfied.

Indeed, for the functions uη(y) := u(y) + η(y · ν) and w̃1(y), by (5.44), (5.35), and the
assumption of Case 1 that H̄(ν) < 1

c1(ν)
, there exists η > 0 sufficiently small so that

H(ν + ∇uη, y) ≤ H(ν + ∇u, y) + η√
θ

= H(ν) + η√
θ

< − η√
θ

+ 1

c1(ν)

= − η√
θ

+ H(ν + ∇w̃1, y) in Hν .
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We note that the function u ∈ Lip(TN ) is bounded, and for any M > 0, the function
u − M ∈ Lip(TN ) and also satisfies (5.42). We may thus assume assume without loss of
generality that u ≤ 0. This implies

uη(y) = u(y) + η(y · ν) = u(y) ≤ 0 = w̃1(y) on �ν.

Furthermore, by (5.46) and (5.47),

lim inf|y|→∞
w̃1(y) − uη(y)

|y| ≥ −η.

By Lemma 5.9, this yields

u(y) + η(y · ν) ≤ w̃1(y) in Hν . (5.48)

If the infimum in (5.43) is achieved, then there exists a subsquence {ym} = {Tmx} so that
limm→∞ |ym |−1w̃1(ym) = 0. Dividing (5.48) by |y|, using that y · ν > 0, and evaluating this
inequality along this particular sequence, we have

η ≤ 0,

which is a contradiction.
If the infimum in (5.43) is not achieved, then we know that for every ε > 0, there exists

a subsequence {ym} = {Tmx} so that T−1
m hν(Tmx) → (c1(ν) − ε)x · ν. In particular, the

function w̃1,ε(x) := (c1(ν) − ε)−1hν(x) − x · ν solves

1

c1(ν) − ε
= H(ν + ∇w̃1,ε, y) > H(ν + ∇u, y) in Hν .

We now repeat the above argument with uη,ε(y) := u(y) +
(

η + ε
c1(ν)−ε

)

y · ν. We may

again choose η > 0 sufficiently small so that
{

H(ν + ∇uη,ε, y) < − η√
θ

+ H(ν + ∇w̃1,ε, y) in Hν,

uη,ε(y) ≤ w̃1(y) on �ν,

and we can check that

lim inf|y|→∞
w̃1,ε(y)

|y| ≥ ε

c1(ν) − ε
,

which implies

lim inf|y|→∞
w̃1,ε(y) − uη,ε(y)

|y| ≥ −η.

By another application of Lemma 5.9, we have

u(y) +
(

η + ε

c1(ν) − ε

)

y · ν ≤ w̃1,η(y) in Hν .

Dividing by |y| and taking this along the particular subsequence {ym}, we have

η + ε

c1(ν) − ε
≤ 0,

which is another contradiction.
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Case 2. H(ν) /∈
[

1
c2(ν)

, 1
c1(ν)

]

. Without loss of generality, let us assume H(ν) > 1
c1(ν)

(otherwise, a symmetric argument to handle the other alternative). We consider the function
ŵ1,λ(y) := λw̃1(y) + (1 − λ)u(y). We note that by the convexity of H(·, y),

H(ν + ∇ŵ1,λ, y) ≤ λH(ν + ∇w̃1, y) + (1 − λ)H(ν + ∇u, y) = λ

c1(ν)
+ (1 − λ)H(ν)

< λH(ν) + (1 − λ)H(ν)

< H(ν) in Hν .

Moreover, by definition of w̃1 and (2.3), we have

lim sup
|y|→∞

ŵ1,λ(y)

|y| = lim sup
|y|→∞

λw̃1(y) + (1 − λ)u(y)

|y| ≤ λ

( √
	

c1(ν)
+ 1

)

=: λM . (5.49)

We now proceed by the same arguments as above. Let uη(y) := u(y) − η(y · ν), choose
λ > 0, and then η = η(λ) > 0 sufficiently small, so that

{

H(ν + ∇ŵ1,λ, y) < − η+λM√
θ

+ H(ν + ∇uη, y) in Hν,

ŵ1,λ(y) ≤ uη(y) on �ν.

By (5.49), we have

lim inf|y|→∞
uη(y) − ŵ1,λ(y)

|y| ≥ −(η + λ)M .

By Lemma 5.9, this yields

ŵ1,λ(y) ≤ u(y) − η(y · ν) in Hν .

Note that for any λ > 0, if {ym} is a sequence such that lim|ym |→∞ |ym |−1w̃1(ym) = 0,
then we have lim|ym |→∞ |ym |−1ŵ1,λ(ym) = 0. We then argue as in the last step of Case 1 to
conclude that upon dividing by |y| and sending |y| → ∞, we will have 0 ≤ −η. We note
that we can make a similar argument as in Case 1 if the infimum in (5.43) is not achieved.

Now since c(ν) is uniquely determined, we have that every subsequence {km} =
{

T−1
m hν(Tm ·)}has a further subsequencewhich converges locally uniformly to x �→ c(ν)x ·ν,

where c(ν) = 1
H(ν)

is uniquely defined. This implies that for any K ⊆ Hν compact, we have

lim
T→∞ sup

x∈K

∣

∣

∣

∣

1

T
hν(T x) − c(ν)x · ν

∣

∣

∣

∣

= 0.

This, combined with Lemma 5.8, guarantees that for any K ⊆ R
N \�ν compact, we have

lim
T→∞ sup

x∈K

∣

∣

∣

∣

1

T
hν(T x) − c(ν)x · ν

∣

∣

∣

∣

= 0.

Wenote that the functions {km} are themselves uniformly bounded and uniformly equicon-
tinuous on any compact set K ⊆ R

N . In particular, by the Arzelà-Ascoli Theorem, this
implies that for any sequence {Tm} tending to infinity, there exists a function q(x) so that

lim
m→∞ sup

x∈K
|km(x) − q(x)| = 0.
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In particular, by uniqueness of limits, we must have that q(x) ≡ c(ν)x · ν, and this yields
that for any K ⊆ R

N compact,

lim
T→∞ sup

x∈K

∣

∣

∣

∣

1

T
hν(T x) − c(ν)x · ν

∣

∣

∣

∣

= 0.

We also have that

lim
T→∞ sup

x∈K

∣

∣

∣

∣

1

T
h−ν(T x) − c(−ν)(x · −ν)

∣

∣

∣

∣

= 0.

Since hν(x) = −h−ν(x) by (2.1), taking x /∈ �ν, we have

|c(ν)x · ν − c(−ν)x · ν| ≤
∣

∣

∣

∣

− 1

T
hν(T x) + c(ν)x · ν

∣

∣

∣

∣

+
∣

∣

∣

∣

1

T
hν(T x) − c(−ν)x · ν

∣

∣

∣

∣

=
∣

∣

∣

∣

1

T
hν(T x) − c(ν)x · ν

∣

∣

∣

∣

+
∣

∣

∣

∣

− 1

T
h−ν(T x) − c(−ν)x · ν

∣

∣

∣

∣

=
∣

∣

∣

∣

1

T
hν(T x) − c(ν)x · ν

∣

∣

∣

∣

+
∣

∣

∣

∣

− 1

T
h−ν(T x) + c(−ν)(x · −ν)

∣

∣

∣

∣

Taking a limit on the right as T → ∞, we arrive at the conclusion that c(ν) = c(−ν). ��
Remark 5.11 A posteriori, knowing that c(ν) = 1

H(ν)
, we may use various known properties

of effective Hamiltonian from [24,Proposition 2] to conclude properties of c(ν). For instance,
we obtain that c(·) is Lipschitz continuous, and moreover that

H(p) := 1

c(p/|p|) |p|

is convex. One could pursue further analysis of alternative representation formulas for H(·)
through its convex, homogeneous, and continuous nature (e.g. the analysis of supports and
gauges, see [33]), but we do not carry this out here.

Remark 5.12 We furthermore recall that in the works of [4, 7], the authors identify the stable
norm ‖x − y‖∗ for x, y ∈ R

N , which represents a homogenized distance function between
x and y. If we think of c(ν)x · ν as the homogenized distance function to the plane �ν, then
in comparison to the Euclidean setting, we expect that for x ∈ Hν ,

c(ν)x · ν = inf
y∈�ν

‖x − y‖∗.

While we do not explore it here, we think it would be very interesting to connect Theorem
1.5 with this related body of literature in geometry.

Finally, we complete the paper with the proof of Theorem 1.6. We first note an equivalent
definition of Bohr almost periodicity, and used throughout the literature in almost periodic
homogenization:

Definition 5.13 A continuous, bounded function g : R
d → R is said to be Bohr almost

periodic if the family of functions
{

g(· + z) : z ∈ R
d
}

is relatively compact in ‖ · ‖∞.
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For a proof of the equivalence between this definition of Bohr almost periodicity, and the one
using trigonometric polynomials, we refer the reader to [37]. With this in hand, we are now
ready to prove Theorem 1.6:

Proof of Theorem 1.6 We note that if a(·) is (Bohr) almost periodic, then a(·) has a uniformly
convergent Bochner-Fourier series (see (5.3)). This was the only fact we needed in the proof
of Lemma 5.7. By the equivalence of Definition 5.13 and the characterization of Bohr almost
periodic functions via their uniformly convergent Bochner-Fourier series (see (5.3)), Lemma
5.7 holds when a(·) is almost periodic.

The proof of Lemma 5.8 only relies on the almost periodicity from Lemma 5.7, in which
case Lemma 5.8 also holds when a(·) is almost periodic.

Finally, the proof of Theorem 1.5 only uses the fact that for every p ∈ R
N , there exists a

unique value of H(p) and a corrector u which is bounded and solves

H(p + ∇u, y) = H(p) in R
N . (5.50)

When a(·) is almost periodic, a result of Ishii [23,Theorem 2] yields the existence of a
bounded uniformly continuous function u satisfying (5.50). This implies that the conclusion
of Theorem 1.5 holds true when a(·) is almost periodic. ��
Acknowledgements We thank William Feldman and Peter Morfe for their interest in our work, and very
helpful discussions and correspondence. R.V. thanks Scott Armstrong (Courant) for helpful discussions on
the planar metric problem.
Rustum Choksi was supported by an NSERC Discovery Grant. Irene Fonseca (I.F.) and Raghav Venkatraman
(R.V.) acknowledge the Center for Nonlinear Analysis where part of this work was carried out. The research
of I.F. was partially funded by the NSF grants DMS-1411646 and DMS-1906238. Jessica Lin was partially
supported by an NSERC Discovery Grant, an FRQNT grant, and the Canada Research Chairs program. The
research of R.V. was partially funded by NSF grant DMS-1411646. R.V. also acknowledges support from an
AMS-Simons travel award.

Appendix A. Modified boundary conditions via De Giorgi’s Slicing tech-
nique

Recalling the distance function hν introduced in Sect. 2.1, we next argue that σ has an
alternative representation with boundary conditions in terms of the function q ◦ hν .

Lemma A.1 Define σ : SN−1 → (0,∞) by

σ(ν) := lim
T→∞

1

T N−1 inf
{

ˆ
T Qν

[

a(y)W (u) + 1

2
|∇u|2

]

dy :

u ∈ H1(T Qν), u|∂T Qν = q ◦ hν

}

.

Then σ(ν) = σ(ν) for all ν ∈ S
N−1.

Proof Fix ν ∈ S
N−1. For ease of notation, for u ∈ H1(A) and A ⊆ R

N open, we introduce
the localized functional

Gε(u, A) :=
ˆ
A

[

1

ε
a
( y

ε

)

W (u) + ε

2
|∇u|2

]

dy.

By the change of variables y �→ T x with ε = 1
T , we rewrite σ as

σ(ν) = lim
ε→0

inf
{Gε(u, Qν) : u ∈ H1 (Qν) , u|∂Qν = (q ◦ hν) (x/ε)

}

, (A.1)
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and, similarly, we rewrite (1.4) as

σ(ν) = lim
ε→0

inf
{Gε(u, Qν) : u ∈ H1 (Qν) , u|∂Qν = ũρ,1/ε,ν

}

. (A.2)

Here, ũρ,1/ε,ν := u0,ν ∗ ρε, where ρε(·) := ε−Nρ(·/ε).
To show that σ(ν) = σ(ν), we first prove that σ(ν) ≥ σ(ν). The inequality σ(ν) ≤ σ(ν)

can be carried out in an analogous manner. Throughout the rest of the proof, we let Q := Qν .
Let η j → 0 as j → ∞ be fixed, and

{

v j
} ⊆ H1(Q) with v j (x) = ρ1/η j ∗ u0,ν(x) on ∂Q

be such that
lim
j→∞Gη j (v j , Q) = σ(ν). (A.3)

We extend v j to τQ, for τ ∈ (1, 2], by defining v j (x) := ρ1/η j ∗ u0,ν(x) for x ∈ τQ \ Q.
Set w j (x) := (q ◦ hν) (x/η j ) for x ∈ R

N . By (2.6), since τ ∈ (1, 2], we have
⎧

⎨

⎩

w j (x) ≥ 1 − c1e
−c2

|x ·ν|
η j if x ∈ τQν ∩ {x · ν ≥ 0} ,

w j (x) ≤ −1 + c1e
−c2

|x ·ν|
η j if x ∈ τQν ∩ {x · ν < 0} .

Therefore, as |w j | ≤ 1,

lim
j→∞ ‖w j − u0,ν‖2L2(τQ)

= lim
j→∞

ˆ
τQ∩{x ·ν>

√
η j
}

|w j − 1|2 dx (A.4)

+ lim
j→∞

ˆ
τQ∩{x ·ν<−√

η j
}

|w j + 1|2 dx

+ lim
j→∞

ˆ
τQ∩{−√

η j≤x ·ν≤√
η j
}

4 dx

= 0. (A.5)

Clearly
lim
j→∞ ‖v j − u0,ν‖L2(τQ\Q) = 0. (A.6)

In particular, we have that

λ j := ‖w j − v j‖L2(τQ\Q) −−−→
j→∞ 0. (A.7)

We will now construct a function u j ∈ H1(τQ) such that u j |∂(τQ)= w j , and for some
C > 0,

lim sup
j→∞

ˆ
τQ

[

1

η j
a

(

x

η j

)

W (u j ) + η j

2
|∇u j |2

]

dx ≤ σ(ν) + C(τ − 1). (A.8)

Our main approach will be to define a new function which smoothly interpolates between v j

in Q and w j on ∂(τQ) in the region τQ \ Q.
We note that by (2.6),

|∇w j (x)|2 = 2

[

W

(

(q ◦ hν)

(

x

η j

))] ∣

∣

∣

∣

∇hν

(

x

η j

)∣

∣

∣

∣

2 1

η2j

≤ 2	

η2j

[

(

1 − (q ◦ hν)
2
(

x

η j

))2
]

123



Anisotropic surface tensions for phase transitions Page 37 of 41   107 

≤ 2	

η2j

[

(

1 − tanh2
(√

2hν

(

x

η j

)))2
]

= 2	

η2j

[

sech4
(√

2hν

(

x

η j

))]

. (A.9)

Combining (2.6), (2.3), and (A.9), we find

|∇w j | ≤ C

η j
e
−c |x ·ν|

η j . (A.10)

We consider, for k ∈ N with k >> 1
τ−1 ,

Lk :=
{

x ∈ τQ \ Q : dist(x, ∂(τQ)) <
1

k

}

.

We divide Lk into cubic shells (or layers), which we denote by
{

Lk
i, j

}Mk, j

i=1
, of thickness η jλ j ,

where λ j is defined by (A.7). We note that Mk, j := � 1
kη jλ j

�, and thus

Mk, jη jλ j ≥ 1/k. (A.11)

For every k, j ∈ N, we let i0 ∈ {1, . . . , Mk, j
}

be the smallest value such that
ˆ
Lk
i0, j

b j (x) dx ≤ 1

Mk, j

ˆ
Lk

b j (x) dx, (A.12)

where

b j (x) := 1

η j
+ |v j (x) − w j (x)|2

(λ j )2η j
+ η j (|∇v j (x)|2 + |∇w j (x)|2).

We also consider cut-off functions ϕk, j ∈ C∞
c (τQ) with

0 ≤ ϕk, j ≤ 1, ‖∇ϕk, j‖L∞ ≤ C

η jλ j
,

and

ϕk, j =
⎧

⎨

⎩

1 for x ∈ Q
⋃

(

⋃i0−1
i=1 Lk

i, j

)

,

0 for x ∈
(

⋃Mk, j
i=i0+1 L

k
i, j

)

.

We note that ϕk, j transitions precisely in the layer Lk
i0, j

. We then set

uk, j := ϕk, jv j + (1 − ϕk, j )w j ,

and we have by (A.4) and (A.6), limk→∞ lim j→∞ ‖uk, j − u0,ν‖L2(τQ\Q) = 0.
We estimate

Gη j (uk, j , τQ) = Gη j

(

v j ,

(

i0−1
⋃

i=1

Lk
i, j

)

⋃

Q

)

+ Gη j

(

uk, j , L
k
i0, j

)

+ Gη j

⎛

⎝w j ,

Mi, j
⋃

i=i0+1

Lk
i, j

⎞

⎠

=: Ak, j + Bk, j + Ck, j . (A.13)

We have
Ak, j ≤ Gη j

(

v j , Q
)+ Gη j

(

v j , τQ \ Q
)

,
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and we see that, since v j = ρ1/η j ∗ u0,ν(x) in τQ \ Q,

Gη j (v j , τQ \ Q) =
ˆ

τQ\Q∩{|x ·ν|<η j}

[

1

η j
a

(

x

η j

)

W (v j ) + η j

2
|∇v j |2

]

dx

≤ C

η j

∣

∣τQ \ Q ∩ {|x · ν| < η j
}∣

∣ ,

where we used the facts that v j ∈ {1,−1} in τQ \ Q ∩ {|x · ν| > η j
}

, and that

|∇v j | = |∇(ρ1/η j ∗ u0,ν)| ≤ Cη−1
j . (A.14)

Hence,
Gη j (v j , τQ \ Q) ≤ C(τ − 1)N−1,

which implies that
lim sup
k→∞

lim sup
j→∞

Ak, j ≤ σ(ν) + C(τ − 1)N−1. (A.15)

Next, since ‖v j‖L∞(τQ) ≤ 1, and ‖w j‖L∞(τQ) ≤ C(	), we have by (A.12),

Bk, j ≤ C
ˆ
Lk
i0, j

[

1

η j
+ η j

(|∇ϕk, j |2(v j − w j )
2 + |∇v j |2 + |∇w j |2

)

]

dx

≤ C
ˆ
Lk
i0, j

[

1

η j
+ |v j − w j |2

η jλ
2
j

+ η j
(|∇v j |2 + |∇w j |2

)

]

dx

≤ C

Mk, j

ˆ
Lk

[

1

η j
+ |v j − w j |2

η jλ
2
j

+ η j
(|∇v j |2 + |∇w j |2

)

]

dx .

By (A.14), (A.10), and (A.11), we obtain

Bk, j ≤ C

Mk, j

[

1

η j
|Lk | + λ2j

η jλ
2
j

+ C

η j
|Lk |
]

≤ C |Lk |
η j Mk, j

+ C

η j Mk, j
≤ C

τ N−1kλ j

k
+ Ckλ j ,

where we have used the fact that |Lk | ≤ C(N ) τ N−1

k . Hence,

lim sup
k→∞

lim sup
j→∞

Bk, j = 0. (A.16)

For the term Ck, j , we first remark that by (2.6), and (2.3),

W (w j ) ≤ (1 − tanh2(2hν(x/η j )))
2 = sech4(2hν(x/η j ))) ≤ Ce

−c |x ·ν|
η j .

Combining this with (A.10), we haveˆ
τQ\Q

[

1

η j
a

(

x

η j

)

W (w j (x)) + η j

2
|∇w j (x)|2

]

dx

≤
ˆ

τQ\Q∩{|x ·ν|≥2η j}

[

1

η j
a

(

x

η j

)

W (w j (x)) + η j

2
|∇w j (x)|2

]

dx

+
ˆ

τQ\Q∩{|x ·ν|≤2η j}

[

1

η j
a

(

x

η j

)

W (w j (x)) + η j

2
|∇w j (x)|2

]

dx

≤ C
ˆ

τQ\Q∩{|x ·ν|≥2η j}

[

1

η j
e
−c |x ·ν|

η j + 1

η j
e
−c |x ·ν|

η j

]

dx
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+ C
ˆ

τQ\Q∩{|x ·ν|≤2η j}
1

η j
dx

≤ C(τ − 1)N−1 + Cη j (τ − 1)N−1 1

η j

≤ C(τ − 1)N−1.

This implies that
lim sup
k→∞

lim sup
j→∞

Ck, j ≤ C(τ − 1)N−1. (A.17)

Finally, by (A.15), (A.16), and (A.17), and using a diagonal argument, we may find an
increasing sequence {k( j)} such that

lim sup
j→∞

[

Ak( j), j + Bk( j), j + Ck( j), j
] ≤ σ(ν) + C(τ − 1)N−1.

By (A.13), we let u j = uk( j), j , and we arrive at (A.8), with u j = w j on ∂(τQ).
To conclude, we now move from τQ to Q, defining ũ j (x) := u j (τ x), for x ∈ Q, and

changing variables to obtain

ˆ
Q

[

τ

η j
a

(

τ y

η j

)

W (̃u j (y)) + η j

2τ
|∇ũ j (y)|2

]

dy

= 1

τ N

ˆ
τQ

[

τ

η j
a

(

x

η j

)

W
(

ũ j

( x

τ

))

+ η j

2τ

∣

∣

∣∇ũ j

( x

τ

)∣

∣

∣

2
]

dx

= 1

τ N

ˆ
τQ

[

τ

η j
a
( x

τ

)

W
(

u j (x)
)+ η jτ

2

2τ

∣

∣∇u j (x)
∣

∣

2
]

dx

= τ

τ N

ˆ
τQ

[

1

η j
a

(

x

η j

)

W
(

u j (x)
)+ η j

2

∣

∣∇u j (x)
∣

∣

2
]

dx .

By (A.8), this implies

lim sup
j→∞

ˆ
Q

[

τ

η j
a

(

τ y

η j

)

W (̃u j (y)) + η j

2τ
|∇ũ j (y)|2

]

dy ≤ 1

τ N−1 σ(ν)+ C

τ N−1 (τ −1)N−1.

We note that ε j := η j
τ

→ 0 and for all x ∈ ∂Q,

ũ j (x) = u j (τ x) = w j (τ x) = (q ◦ hν)

(

τ x

η j

)

= (q ◦ hν)

(

x

ε j

)

.

Hence, ũ j is admissible for (A.1) (with sequence ε j ), from which we conclude that

σ(ν) ≤ lim sup
j→∞

ˆ
Q

[

τ

η j
a

(

y

η j

)

W (̃u j (y)) + η j

2τ
|∇ũ j (y)|2

]

dy

≤ 1

τ N−1 σ(ν) + C

τ N−1 (τ − 1)N−1.

Letting τ → 1+, we arrive at σ(ν) ≤ σ(ν). As priorly mentioned, the opposite inequality
follows from a symmetrical argument. ��
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