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a b s t r a c t

This note concerns the problem of minimizing a certain family of non-local
energy functionals over measures on Rn, subject to a mass constraint, in a
strong attraction limit. In these problems, the total energy is an integral over
pair interactions of attractive-repulsive type. The interaction kernel is a sum of
competing power law potentials with attractive powers α ∈ (0, ∞) and repulsive
powers associated with Riesz potentials. The strong attraction limit α → ∞ is
addressed via Gamma-convergence, and minimizers of the limit are characterized
in terms of an isodiametric capacity problem. We also provide evidence for
symmetry-breaking of minimizers in high dimensions.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the results

We consider mass-constrained variational problems of the form⎧⎨⎩Minimize Eα,λ(µ) :=
∫
Rn

∫
Rn

Kα,λ(x − y) dµ(x)dµ(y)

over P := {µ Borel measure on Rn : µ(Rn) = 1} ,
(1)

where the interaction kernel is given by

Kα,λ(x − y) := |x − y|α + |x − y|−λ with α ∈ (0, ∞) and λ ∈ (0, n). (2)

These kernels are attractive at long range, with the attraction controlled by the exponent α, and strongly
repulsive at short range, with the repulsion controlled by λ, see Fig. 1. Since the kernels are lower
semicontinuous, locally integrable, and grow at infinity, by the results of [5,14], Problem (1) has a global
minimizer.
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Fig. 1. Shape of the interaction kernel Kα,λ(| · |) for α ∈ (0, ∞) and λ ∈ (0, n).

Variational problems of the form (1) arise in connection with a class of models for aggregation and self-
assembly that have recently received much attention (see for example, [2] and the references therein). In
those models, a population density ρ evolves according to the equation

ρt + ∇ · (ρv) = 0 , v = −∇Kα,λ ∗ ρ,

which is the gradient flow of the energy Eα,λ(µ) on absolutely continuous measures µ = ρ dx in the
2-Wasserstein metric (cf. [6]). Energy minimizers represent stable steady-states of the aggregation process.

Here, we study the minimization problem (1) in the strong attraction regime where α → ∞. In this limit,
finite energy alone restricts the support of a measure to have diameter no larger than one.

In Fig. 2, we present a few particle simulations in dimension n = 2 which suggest that as α increases,
minimizers concentrate on the boundary of the ball of diameter 1 for some values of λ; but spread out (non-
uniformly) over the ball for larger values of λ. A broader range of behavior is expected for other parameters
and in higher dimensions (see for example Fig. 3).

Our first result is that in the limit as α → ∞, Problem (1) approaches the problem of minimizing

E∞,λ(µ) :=

⎧⎨⎩
∫
Rn

∫
Rn

|x − y|−λ
dµ(x)dµ(y) if diam(supp µ) ≤ 1

+∞ otherwise
(3)

over P. The limit is understood in the sense of Gamma-convergence (cf. Section 3).

Theorem 1 (Strong Attraction Limit). Let λ ∈ (0, n). Then Eα,λ
Γ−→ E∞,λ as α → ∞ in the weak topology

of measures.

The limiting problem admits a solution:

Theorem 2 (Existence). The functional E∞,λ has a global minimizer in P.

The proofs of Theorems 1 and 2 are presented in Section 3.

Remark. In the literature, the interaction kernel is sometimes normalized to

K̃α,λ(x − y) := 1
α

|x − y|α + 1
λ

|x − y|−λ
, (4)

which assumes its minimum when |x − y| = 1 (cf. [4]). This normalization can be achieved by acting on P
with a suitable dilation. For the normalized kernel, the conclusions of Theorem 1 hold with 1

λ E∞,λ as the
limiting functional, and Theorem 2 applies without change.
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Fig. 2. Particle simulations associated with minimizers of (1) in dimension n = 2. Each particle i = 1, . . . , N is tracked via the
system of ODEs

dXi

dt
= −

1
N

N∑
j=1

∇Kα,λ(Xi − Xj )

until the configuration stabilizes. The interaction kernel is given by Eq. (2), where the exponent of attraction ranges through
α = 2, 20, 200 (from left to right). Top row: Repulsive term replaced with the logarithmic term − log |x − y| that corresponds to
the Newton potential (λ = n − 2) in two dimensions. Bottom row: Exponent of repulsion λ = 1, which lies in the super-Newtonian
regime.

We then consider the nature of minimizers for the limiting problem E∞,λ. This turns out to be a
rather subtle question; indeed, due to the diameter constraint, the functional E∞,λ is non-convex on P.
Our approach is to rephrase the limiting problem as an isodiametric capacity problem. More precisely, for
λ ∈ (0, n) and a set A ⊂ Rn, we define the λ-capacity of A to be

Cλ(A) :=
(

inf
ν∈P

{
Iλ(ν)

⏐⏐ supp ν ⊂ A
})−1

, (5)

where
Iλ(ν) :=

∫
Rn

∫
Rn

|x − y|−λ
dν(x)dν(y).

In the special case where n = 3 and λ = 1, Cλ agrees (up to a multiplicative constant) with the electrostatic
capacity of A. It is straightforward (cf. Lemma 7) to show that

inf
ν∈P

E∞,λ(ν) =
(

sup
A⊂Rn

{
Cλ(A)

⏐⏐ diam(A) ≤ 1
})−1

,

with a direct relationship between the optimal measure ν on the left and optimal set A on the right. This
allows us to exploit tools from potential theory (cf. [10]) to partially characterize the support of minimizers.

Theorem 3 (Properties of Minimizers of the Limit Problem). Let n ≥ 3, λ ∈ (0, n), and assume that µ

minimizes E∞,λ on P. Then there exists a convex body W of constant width 1 such that⎧⎪⎨⎪⎩
supp µ ⊂ ∂W , λ ∈ (0, n − 2) (sub-Newtonian),
supp µ = ∂W , λ = n − 2 (Newtonian),
supp µ = W , λ ∈ (n − 2, n) (super-Newtonian).
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Fig. 3. Results of 3D particle simulations with λ = 0.01 and α = 2, 20, 200 (from left to right).

The set W may depend on µ as well as λ. We do not know whether minimizers are unique up to translation,
and whether E∞,λ admits additional critical points, including local minima. The proof of Theorem 3 is
presented in Section 4.

The theorem extends to lower dimensions as follows. For n = 1, the entire range λ ∈ (0, 1) is super-
Newtonian, and the support of any minimizing measure is an interval of length one. In dimension n = 2, the
entire range λ ∈ (0, 2) is super-Newtonian as well, and the support of any minimizing measure is a planar
convex set W of constant width 1. The role of the Newton potential |x − y|2−n is played by the logarithmic
kernel − log |x − y|; in this case, the support of a minimizer is the boundary of a planar convex set of constant
width 1.

In Section 5, we prove the following result pertaining to the asymmetry of minimizers in high space
dimensions. Precisely, we prove

Theorem 4 (Asymmetry of Minimizers in High Dimensions). For every λ > 0 there exists N such that for
all n ≥ N ,

sup
{

Cλ(A)
⏐⏐ A ⊂ Rn, diam(A) ≤ 1

}
> Cλ(B(n)

1/2),

where B
(n)
1/2 = {x ∈ Rn : |x| ≤ 1

2 }.

This demonstrates that for any fixed value of λ > 0, the ball ceases to be optimal when n is sufficiently
large. Thus, in this regime optimal measures are supported on the boundary of sets that are not radially
symmetric. As a result, minimizers of Eα,λ in high dimensions must also be asymmetric when α is large.

The prospect of symmetry-breaking presents an interesting, largely open, question. Even in low space
dimensions, we suspect that when 0 < λ ≪ n−2 the maximal capacity among bodies of given diameter may
be achieved by non-symmetric sets, and that the equilibrium measure may be supported on a proper subset
of the boundary. For example, in Fig. 3 we present the results of 3D particle simulations for λ = 0.01 (which
lies in the sub-Newtonian regime) and respectively, α = 2, 20, 200. The simulations suggest that minimizers
are asymmetric for large α. However, the number of particles is too small to draw conclusions about the
supports of minimizing measures.

2. Related work and further questions

2.1. Comparisons with related work

According to Theorem 3, every minimizer µ of the functional E∞,λ is supported on a convex body Wµ of
constant width 1, and the following relations, summarized in Table 1, hold true.
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Table 1
Characteristics of minimizers of E∞,λ in terms of a body Wµ of constant width.

Repulsion Geometry

λ < n − 2 supp µ ⊂ ∂Wµ

λ = n − 2 supp µ = ∂Wµ

λ > n − 2 supp µ = Wµ

In particular, the Hausdorff dimension of µ satisfies

dim(supp µ)

⎧⎪⎨⎪⎩
≤ n − 1 , λ ∈ (0, n − 2) ,

= n − 1 , λ = n − 2 ,

= n , λ ∈ (n − 2, n) .

To offer some perspective, note that classical results of geometric measure theory imply that dim(supp µ) ≥ λ

for every Borel measure µ with E∞,λ(µ) < ∞ (see for example Theorem 4.13 in [8]). For minimizers of energy
functionals defined by attractive-repulsive pair interaction kernels, a stronger lower bound was obtained in
[1, Theorem 1]. Specifically, minimizers of Eα,λ in the sub-Newtonian regime λ ∈ (0, n − 2) satisfy

dim(supp µ) ≥ λ + 2 . (6)

When λ ∈ (n−3, n−2) this lower bound exceeds n−1, and in particular exceeds the dimension of the support
of the corresponding minimizer of E∞,λ. The results of [1] apply more generally to local minimizers, in an
optimal transport topology, for a larger class of attractive-repulsive functionals with integrable singularities
at the origin. In light of (6), which holds for all α > 0, the dimensional reduction of the support for λ ≤ n−2
(cf. Theorem 3 or Table 1) is only achieved in the limit. In this limit, the dimension of minimizers are strictly
smaller then those in the finite regime, a consequence of the strength of the diameter constraint.

Through Theorem 1 and Lemma 7 (below), the question of what the minimizers of the limiting functional
look like is transformed into an isodiametric capacity problem: For a given λ ∈ (0, n), which sets of diameter
1 have the largest λ-capacity? Although for any given set W ⊂ Rn the equilibrium measure that realizes the
capacity is unique, there could be more than one capacity-maximizing set.

One candidate for a set that maximizes capacity among sets of diameter 1 is the ball of radius 1
2 , which

uniquely maximizes volume under the diameter restriction. For each λ ∈ (n − 2, n), the equilibrium measure
on the ball is a well-known positive, radially symmetric density, and for λ ≤ n − 2 it is the uniform measure
on the boundary sphere [10, p. 163]. Note, however, that the ball minimizes capacity among sets of given
volume, indicating competition between size and shape in the isodiametric problem.

There are a number of related results for the weak repulsion regime (corresponding to λ < 0) which
imply that the support of minimizers has dimension zero [1, Theorem 2] provided that the pair interaction
kernel vanishes more than quadratically as |x − y| → 0. In particular, the variance is maximized, among
probability measures on Rn whose support has diameter one, by the uniform measure on the vertices of the
unit simplex [11].

2.2. Restricting problem (1) to densities and sets

In an interesting variant of Problem (1), the minimization is restricted to absolutely continuous proba-
bility measures µ = ρdx with density bounded by ρ ≤ m−1 for some m > 0.⎧⎪⎨⎪⎩

Minimize E ′
α,λ(ρ) :=

∫
Rn

∫
Rn

Kα,λ(x − y)ρ(x)ρ(y) dxdy

over Am :=
{

ρ ∈ L1(Rn)
⏐⏐ 0 ≤ ρ ≤ m−1 ,

∫
Rn

ρ dx = 1
}

.
(7)
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The density constraint plays the role of an additional repulsive term in the energy. This is relevant for
biological aggregation problems, where the density of individuals cannot exceed a certain critical value. By
rescaling, Problem (7) is equivalent to minimizing E ′

α,λ(ρ) among measures of mass m, subject to the density
constraint ρ ≤ 1. Unlike Problem (1), the mass m does not scale out of the problem. It is known that for
each α > 0 and λ ∈ (0, n), the functional E ′

α,λ has a minimizer on Am for any m > 0 (cf. [7]).
The proofs of Theorems 1 and 2 continue to hold over the set of probability measures of density at most

m−1 in the weak topology on L1 (which is strictly stronger than the topology of P).

Corollary 5 (Strong Attraction Limit with Density Constraint). For λ ∈ (0, n) and µ ∈ P, let E ′
α,λ be as in

Problem (7), and define E ′
∞,λ(ρ) := E∞,λ(ρ dx) for ρ ∈ L1. Then

(1) E ′
α,λ

Γ−→ E ′
∞,λ as α → ∞ in the weak topology on L1.

(2) For each m ≤ |B 1
2
|, the functional E ′

∞,λ attains a global minimum on Am.

The assumption on m guarantees that the energy of the uniform measure on B 1
2

remains bounded as
α → ∞ (see the proof of Theorem 2). As m → 0, the measures corresponding to a sequence of minimizers
converge (up to translations, along suitable subsequences, weakly in L1) to minimizers of E∞,λ.

Problem (7) is of interest also when m is large. Under certain assumptions on α and λ, E ′
α,λ is minimized

for m sufficiently large by the uniform probability density on a set S of volume m [4,9,12]. In the context of
aggregation models, this indicates the formation of a swarm. A minimizing set is the solution of the purely
geometric, non-local shape optimization problem{

Minimize E ′′
α,λ(S) := Eα,λ(νS)

over Sm :=
{

S ⊂ Rn
⏐⏐ |S| = m

}
,

(8)

where νS is the uniform probability measure on S. It turns out that the infimum in Problem (8) agrees
with Problem (7), but it is not always attained. If the density of a minimizer of E ′

α,λ on Am falls strictly
between 0 and m−1 on all or part of its support, then the shape optimization problem (8) has no solution
[4, Theorem 4.4], indicating a failure to fully aggregate. In this case, minimizing sequences for Problem (8)
diverge due to oscillations. When m is too small, typically ρ < m−1 everywhere (cf. [4,9,12]), preventing
even partial aggregation.

All known solutions of the shape optimization problem (8) are radially symmetric, and in many cases
they are large balls (cf. [4,9,12]). It may be possible to discover interesting examples of symmetry-breaking
in the strong-attraction limit, using Corollary 5 and the known relation between Problems (7) and (8).

We are not aware of any explicit characterization of the minimizers for E ′
∞,λ on Am, even in the Newtonian

case. Suppose that W maximizes capacity among sets of given diameter. Since the density constraint prevents
minimizers to concentrate on a lower-dimensional set, one may wonder whether a thin neighborhood of ∂W

might appear as a solution to Problem (8), and whether such a solution persists for sufficiently large finite
values of α? When W is not a ball, this could give rise to symmetry-breaking in Problems (7) and (8).

3. Convergence

We begin by recalling a few definitions. Given a topological space X, let (Gn)n be a sequence of functions
on X. We say that (Gn) Gamma-converges to a function G (Gn

Γ−→ G) if the following two conditions
hold for every x ∈ X:

• Lower bound inequality: for all sequences (xn)n ⊂ X such that xn → x ∈ X,

lim inf
n→∞

Gn(xn) ≥ G(x) ;
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• Upper bound inequality: for all x ∈ X there exists a sequence (xn)n ⊂ X such that xn → x and

lim sup
n→∞

Gn(xn) ≤ G(x).

Gamma-convergence has many useful implications, the most important of which is that if xn minimizes Gn

over X, then every cluster point of the sequence (xn) minimizes G over X (cf. [3]).
Given a sequence of measures (µn)n ⊂ P, we say (µn)n converge weakly to µ ∈ P (µn ⇀ µ) if

lim
n→∞

∫
ϕ dµn =

∫
ϕ dµ

for every bounded continuous function ϕ on Rn. This induces the weak topology on P.

Proof of Theorem 1. Let µ ∈ P be given. In the case where diam(supp µ) > 1, choose two points
p, q ∈ supp µ with |p − q| > 1. By continuity of the distance function, there exist open neighborhoods U, V

of p and q such that dist(U, V ) > 1. For any sequence of measures (µn) with µn ⇀ µ in P, we have

Eα,λ(µn) =
∫
Rn

∫
Rn

|x − y|α + |x − y|−λ
dµn(x)dµn(y)

≥
(
dist(U, V )

)α
µn(U)µn(V ) .

Since lim inf µn(U) ≥ µ(U) > 0 and likewise for V , it follows that Eαn,λ(µn) → ∞ along every sequence
(αn) with αn → ∞, verifying simultaneously the lower and upper bound inequalities for this case.

Otherwise, diam(supp µ) ≤ 1. To see the lower bound inequality, let (µn) be a sequence in P that
converges weakly to µ, and let t > 0. For every α > 0,

Eα,λ(µn) ≥
∫
Rn

∫
Rn

min{|x − y|−λ
, t} dµn(x)dµn(y).

Since Rn×Rn is separable, the product measures µn×µn converge weakly to µ×µ, and thus for any sequence
(αn),

lim inf
n→∞

Eαn,λ(µn) ≥
∫
Rn

∫
Rn

min{|x − y|−λ
, t} dµ(x)dµ(y).

By monotone convergence, taking t → ∞ yields the lower bound inequality.
The upper bound inequality is achieved by a sequence of properly chosen dilations of µ. Given a sequence

αn → ∞, set βn = e
1√
αn , and define a sequence of Borel measures by

µn(A) = µ(βnA) , n ≥ 1.

Since βn → 1, clearly µn ⇀ µ. We estimate

Eαn,λ(µn) =
∫
Rn

∫
Rn

|x − y|αn + |x − y|−λ
dµn(x)dµn(y)

=
∫
Rn

∫
Rn

( |x − y|
βn

)α

+
( |x − y|

βn

)−λ

dµ(x)dµ(y)

≤ e−√
αn + e

λ√
αn E∞,λ(µ) .

We have used that |x − y| ≤ 1 on the support of µ to bound the first summand of the integrand, and inserted
the definition of the limiting functional into the second summand. The desired inequality follows upon taking
n → ∞. □
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The proof of Theorem 2 requires a compactness argument. To this end one often resorts to an application
of Lions’ concentration compactness principle for probability measures (cf. [15, Section 4.3]) which asserts
that every sequence (µn)n in P has a subsequence (µnk

)k satisfying one of the three following alternatives:
(i) tightness up to translation (ii) vanishing (mass sent to infinity) or (iii) dichotomy (splitting). A standard
technique is to show that (ii) and (iii) cannot happen, yielding (i) which, precisely, means: There exists a
sequence (yk)k ⊂ Rn such that for all ε > 0 there exists R > 0 with the property that µnk

(BR(yk)) ≥ 1 − ε

for all k.
However, in our simpler case we may just as well directly prove tightness to obtain compactness.

Lemma 6. Let Eα,λ be as in Eq. (1), let (αn) be a sequence with αn → ∞, and fix λ ∈ (0, n). Then every
sequence (µn) in P such that Eαn,λ(µn) is bounded has a subsequence that converges weakly, up to translations,
to some µ ∈ P.

Proof. Let (µn) be such that
sup
n∈N

Eαn,λ(µn) < ∞.

Fix an R > 1. We have the lower bounds

Eαn,λ(µn) ≥
∫∫

|x−y|≥R

Rαn dµn(x)dµn(y)

≥ Rαn

∫
Rn

µn

(
Rn \ BR(y)

)
dµn(y)

≥ Rαn
(
1 − sup

y∈Rn
µn(BR(y))

)
.

Since the left hand side is bounded by assumption while αn → ∞, it follows that supy∈Rn µn(BR(y)) → 1.
This establishes the first alternative of Lions’ concentration compactness principle.

Choose a sequence (yn) ⊂ Rn such that

lim
n→∞

µn(B2(yn)) = 1.

Given ε > 0, let N be so large that µn(B2(yn)) ≥ 1 − ε for all n > N . Then choose R so large that
µn(BR(yn)) ≥ 1 − ε for n = 1, . . . , N . Taking R ≥ 2 ensures that µn(BR(yn)) ≥ µn(B2(yn)) ≥ 1 − ε also for
n > N .

Let (µ̃n)n be the sequence of translates of µn defined by

µ̃n(A) = µn(yn + A) , n ≥ 1

for each Borel set A ⊂ Rn. Since (µ̃n) is tight. Prokhorov’s theorem yields a subsequence (µ̃nk
)k that

converges weakly in P. □

Proof of Theorem 2. Let (αn) be a nonnegative sequence with αn → ∞, and let (µn) be a sequence of
measures such that each µn minimizes Eαn,λ. We will prove that (Eαn,λ(µαn))n is bounded, and then apply
Lemma 6.

Let ν be the uniform probability measure on the ball of radius 1
2 . Since µn minimizes Eαn,λ for each n,

we have

Eαn,λ(µn) ≤ Eαn,λ(ν)

=
∫
Rn

∫
Rn

|x − y|α + |x − y|−λ
dν(x)dν(y)
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≤ 1 +
∫
Rn

∫
Rn

|x − y|−λ
dν(x)dν(y)

< ∞ .

In the last two inequalities, we have used that the support of ν has diameter one, and that the kernel is
locally integrable.

By Lemma 6 there exists a subsequence µnk
that converges weakly up to translation, to some measure

µ ∈ P. Since the functionals are translation invariant, we may assume that the sequence of minimizers
itself that has a subsequence converging weakly to µ. By the properties of the Gamma-limit, µ is a global
minimizer of E∞,λ. □

4. Characterization of minimizers

We recall some classical results from potential theory. First, recall the λ-capacity of a set A ⊂ Rn

previously defined in (5) as the reciprocal of the minimum of the repulsive energy Iλ over measures supported
in A. If A is a compact set of positive Lebesgue measure, the λ-capacity is finite by the local integrability
of the Riesz-potential, and the supremum is achieved by some measure µ ∈ P. Since Iλ is positive definite,
the minimizer is unique.

The next lemma relates the minimization problem for E∞,λ to an isodiametric capacity problem.

Lemma 7. Let n ≥ 1, λ ∈ (0, n). Then

inf
ν∈P

E∞,λ(ν) =
(

sup
A⊂Rn

{
Cλ(A)

⏐⏐ diam(A) ≤ 1
})−1

.

Furthermore, the infimum on the left hand side is attained for some measure µ with diam(supp µ) = 1, and
the supremum on the right hand side is attained for some convex body W ⊂ Rn of constant width 1 containing
the support of µ. Conversely, if W maximizes λ-capacity among bodies of constant width, then the equilibrium
measure on W attains the minimum on the left hand side.

Proof. We split the minimization problem for E∞,λ into two steps,

inf
ν∈P

E∞,λ(ν) = inf
A⊂Rn

{
inf

ν∈P

{
Iλ(ν)

⏐⏐ supp ν ⊂ A
} ⏐⏐⏐ diam(A) ≤ 1

}
=

(
sup

A⊂Rn

{
Cλ(A)

⏐⏐ diam(A) = 1
})−1

.

By Theorem 2, the infimum on the left hand side is attained for some measure µ ∈ P. Clearly,
diam(supp µ) = 1, since otherwise µ could be rescaled to lower the value of E∞,λ. Moreover, A = supp µ

achieves the supremum on the right hand side, and µ is the equilibrium measure for the capacity Cλ(A).
Since the capacity increases monotonically under inclusion, we may replace A by its convex hull. The last
claim follows since every closed convex set of diameter 1 is contained in a convex body W of constant width
1 (cf. [13]). Since Cλ(W ) = Cλ(supp µ), if follows that µ is the equilibrium measure also for W . □

We can now appeal to known properties of equilibrium measures in classical potential theory. Given a
probability measure µ on Rn and λ ∈ (0, n), we define the corresponding potential by

ϕµ
λ(x) :=

∫
Rn

|x − y|−λ
dµ(y) .

For any x ∈ Rn, the integral is well-defined and strictly positive, though possibly infinite. The function has
the following regularity property outside the support of µ.
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Lemma 8. Let µ be a probability measure on Rn. On Rn \ supp µ, the potential ϕλ
µ is smooth and⎧⎪⎨⎪⎩

strictly subharmonic λ ∈ (0, n − 2) ,

harmonic λ = n − 2 ,

strictly superharmonic λ ∈ (n − 2, n) .

Proof. By direct computation,

∆ϕµ
λ(x) = λ(λ + 2 − n)

∫
Rn

|x − y|−λ−2
dµ(y)

away from the support of µ. □

In the super-Newtonian regime, the equilibrium measure has the following property.

Lemma 9 ([10, p. 137]). Let λ ≥ n − 2, and let W ⊂ Rn be a compact set of positive capacity. If µ ∈ P
minimize Iλ among probability measures supported on W , then

ϕµ
λ(x) = Iλ(µ) approximately everywhere on W

ϕµ
λ(x) ≤ Iλ(µ) throughout Rn

where approximately everywhere means everywhere except on a set of capacity zero.

We are ready for the proof of Theorem 3.

Proof. Let µ be a minimizer of E∞,λ. By Lemma 7, µ is the equilibrium measure that achieves the λ-capacity
of some convex body W of constant width 1. When λ ≤ n − 2, classical results of potential theory (cf.
[10, p. 162]) ensure that supp µ ⊂ ∂W . This proves the claim in the sub-Newtonian regime.

Let now λ ≥ n−2, and p ∈ ∂W . Since W is a convex body, every neighborhood of p intersects the interior
of W in a set of positive volume (and hence positive capacity). Again by classical results of potential theory
(cf. [10, p. 164]), p lies in the support of µ. Therefore ∂W ⊂ supp µ. Together with the result for λ ≤ n − 2,
this completes the proof in the Newtonian case.

For λ > n − 2 Lemma 8 yields that the potential ϕλ
µ is strictly subharmonic outside the support of µ. By

the strong maximum principle, ϕλ
µ is non-constant on every non-empty open set U with µ(U) = 0. On the

other hand, ϕλ
µ is constant on the interior of W by Lemma 9. Therefore µ(U) > 0 for every non-empty open

subset of the interior of W , and we conclude that W ⊂ supp µ. This proves the claim in the super-Newtonian
regime. □

5. Capacity estimates

We close with some simple capacity estimates which will prove Theorem 4.

Lemma 10. Let n ≥ 1, λ ∈ (0, n). Then

sup
A⊂Rn

{
Cλ(A)

⏐⏐ diam(A) = 1
}

< 1.

Proof. By Lemma 7, there is a set A ⊂ Rn that maximizes the capacity Cλ among sets of diameter 1. Let
µ be the equilibrium measure on A that achieves the capacity. We estimate

E∞,λ(µ) − 1 ≥
∫ (∫

B 1
2

(x)
(|x − y|−λ − 1) dµ(y)

)
dµ(x) > 0,
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where the first inequality holds since the integrand is nonnegative for every pair of points x, y ∈ A, and the
second inequality uses that µ(B 1

2
(x)) > 0 for x in the support of µ. By Lemma 7, Cλ(A) = (E∞,λ(µ))−1 < 1,

as claimed. □

We next consider the capacity of balls in high dimensions.

Lemma 11. For every λ > 0
lim

n→∞
Cλ(B(n)

1/2) = 2− λ
2 .

Proof. This follows by directly computing Cλ(B(n)
1/2) (cf. [10, p. 163]) and applying Stirling’s

approximation. □

Finally, we construct sets of larger capacity in high dimensions.

Lemma 12. For every λ > 0,

lim
n→∞

(
sup

{
Cλ(A)

⏐⏐ A ⊂ Rn, diam(A) ≤ 1
})

= 1.

Proof. Since Cλ(A) < 1 for all n by Lemma 10, it suffices to establish the corresponding lower bound on
the capacity.

We will construct a family of subsets (An)n of diameter 1 in the sphere of radius 1
2
√

2 in Rn that achieves
this limit. For each n > λ + 1, the spherical cap of diameter 1 in this sphere has positive λ-capacity. Let An

be a set of maximal capacity among such subsets, and let µn be the equilibrium measure on An that attains
the capacity.

For m, n > λ + 1, consider a convex combination

µ = (1 − t)(µm ⊗ δ) + t(δ ⊗ µn)

on Rm+n, where δ denotes the unit mass at 0 in Rn and Rm, respectively, and t ∈ (0, 1) will be chosen below.
By definition, µ is supported on (Am × {0}) ∪ ({0} × An), which lies in the sphere of radius 1

2
√

2 in Rm+n

and has diameter 1. We estimate

E∞,λ(µm+n) − 1 ≤ E∞,λ(µ) − 1

=
∫ ∫

(|x − y|−λ − 1) dµ(x)dµ(y)

= (1 − t)2(E∞,λ(µm) − 1) + t2(E∞,λ(µn) − 1) ;

the mixed terms vanish because |x − y| = 1 whenever x ∈ Am × {0} and y ∈ {0} × An. Minimization over t

yields
E∞,λ(µm+n) − 1 ≤ (E∞,λ(µm) − 1)(E∞,λ(µn) − 1)

E∞,λ(µm) + E∞,λ(µn) − 2 .

Since E∞,λ(µn) > 1 for all n by Lemma 10, we can pass to reciprocals and conclude that (E∞,λ(µn) − 1)−1

is superadditive in n. By Fekete’s superadditivity lemma

lim
n→∞

1
n

(E∞,λ(µn) − 1)−1 = sup
n

1
n

(E∞,λ(µn) − 1)−1
> 0.

It follows that limn→∞ Cλ(An) = (limn→∞ E∞,λ(µn))−1 = 1. □

The proof of Theorem 4 is an immediate corollary of Lemmas 11 and 12 since 2− λ
2 < 1 for every λ > 0.

Note that the near-maximizers constructed in the proof of Lemma 12 have dimension much below n, but
this need not be true for actual maximizers.
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