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1. If you are not registered in this section, your grade will NOT count.

2. This is a closed book exam and calculators are NOT permitted.
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Question 1 (10 pts) Answer true (T) or false (F) to the following statements:
(i) If φ is a smooth scalar function, then div curl ∇φ = 0.

(ii) If F is a smooth conservative vector field, then div F = 0.

(iii) If a vector field F has zero divergence in a simply connected domain D, then F is conservative
in D.

(iv) The curl of any vector field of the form 〈f1(x, y, z), f2(x, y, z), 0〉 is always parallel to
k =< 0, 0, 1 >.

(v) If G is a vector potential associated with a vector field F then so is G +∇φ, where φ is any
smooth function.

(vi) If S is the graph of z = f(x, y) for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2 (with f smooth), then

∫∫
S

5 dS = 5
∫ 2

0

∫ 2

0

√
1 +

(
∂f

∂x

)2

+
(
∂f

∂y

)2

dx dy.

(vii) If a 3D vector field F is irrotational in D =
{

(x, y, z)
∣∣∣∣ 1 < x2 + y2 + z2 < 2

}
, then for any

closed curve C lying in D, ∫
C

F · dr = 0.

viii) If a 2D vector field F is irrotational in D =
{

(x, y)
∣∣∣∣ 1 < x2 + y2 < 2

}
, then for any closed

curve C lying in D, ∫
C

F · dr = 0.

(ix) The area of region R bounded by a curve C (with the positive orientation) is given by the line
integral ∫

C
x dx.

(x) If div F = 0 at all points in space, then the flux of F through the plane x + y + z = 1 with
orientation normal pointing upwards is 0.
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Question 2 a) (5 pts) Suppose a wire is bent into the shape of the parametrized curve

x(t) = 3t2 y(t) = 2t3 z(t) = t4,

from point (3, 2, 1) to (12, 16, 16). Suppose the mass density of the wire is given by ρ(x, y, z) = x2yz.
Write down an integral with respect to t whose value gives the mass of the wire (do not evaluate
the integral).

b) (5 pts) Let F = 〈yz, xz, xy〉. Evaluate
∫
C F · dr where C is curve from (1, 0, 2) to (0, 1, 3) lying

on the intersection of the cylinder x2 + y2 = 1 and plane x + z = 3. Here, you must give a final
numerical value to the integral.
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Question 3 a) (5 pts) Let F = 〈1, 2, x + y + z〉. Consider the triangle lying in the plane
x+ y + z = 3 with vertices (0, 0, 3), (0, 3, 0), (0, 0, 3). Let S be part of the plane which lies inside
this triangle with normal pointing upwards. What is the flux∫∫

S
F · dS?

b) (5 pts) Compute the flux integral ∫∫
S

F · dS,

where F = 〈y,−x, z2〉 and S is the part of the conical surface 2z −
√
x2 + y2 = 0 between z = 2

and z = 4 with unit normal pointing downwards. You may leave your answer as a iterated
double integral with respect to x and y.
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Question 4 (10 pts) Use the Divergence Theorem to find the flux of

F = 〈x+ y3 + 4z4 , zex + y , x sin y + 3z 〉,

out of the region bounded below by the plane z = 0 and above by the sphere x2 + y2 + z2 = 1.
That is, find ∫∫

S
F · dS,

where S is the boundary of the region bounded below by the plane z = 0 and above by the sphere
x2 + y2 + z2 = 1 (oriented with the outward normal).
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Question 5 (10 pts) I want you to use Stokes’s Theorem to evaluate the circulation∫
C

F · dr

where C is the curve of intersection of the cylinder x2 + y2 = 1 and the parabolic sheet z = x2 with
orientation induced by the upward normal to the parabolic sheet. I will not tell you what F is but
rather I will tell you its curl:

curl F = 〈−2x, , x3z2 + y , 5y2 + z〉.
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Question 6 a) (5 pts) Let C be the curve which is the boundary of the square lying in the plane
x + y + z = 6 centred at the point (1, 2, 3) with side length 1

10 . Give C the orientation induced
by upward normal 〈1, 1, 1〉. Suppose F is a smooth vector field whose curl at the point (1, 2, 3) is
given by 〈2, 3, 1〉. Use only this information to approximate the circulation integral∫

C
F · dr.

b) (5 pts) Let F be a smooth 3D vector field and let Sε denote the sphere of radius ε centred at
the origin. What is

lim
ε→0+

1
4πε2

∫∫
Sε

F · dS ?

Note here we are taking the limiting value of the flux per unit surface area, not the flux per
unit enclosed volume. You must explain your reasoning.


