Advanced Calculus for Engineers

Math 264

March 14, 2013

Time: $8{:}35$ - $9{:}55~\mathrm{AM}$

Prof. N. Sancho

Student name (last, first)	Student number (McGill ID)

INSTRUCTIONS

- 1. If you are not registered in this section, your grade will NOT count.
- 2. This is a closed book exam and calculators are NOT permitted.
- 3. Make sure you READ CAREFULLY the question before embarking on the solution.
- 4. EXCEPT for Question 1, you must SHOW ALL YOUR WORK.
- 5. This exam comprises 7 pages (including the cover page). Please provide all your answers on this exam.

Problem	1	2	3	4	5	6	Total
Mark							
Out of	10	10	10	10	10	10	60

Question 1 (10 pts) Answer true (T) or false (F) to the following statements:

(i) If \mathbf{F} has zero divergence in a simply connected domain D, then \mathbf{F} is conservative in D.

(ii) If div $\mathbf{F} = 0$ at all points in space, then the flux of \mathbf{F} through the paraboloid $z = x^2 + y^2$, with orientation normal pointing upwards, is 0.

(iii) The curl of any vector field of the form $\langle 0, f_2(x, y, z), f_3(x, y, z) \rangle$ is always parallel to $\mathbf{i} = \langle 1, 0, 0 \rangle$.

(iv) If \mathbf{F} is a smooth vector field, then div curl $\mathbf{F} = 0$.

(v) If ϕ is a smooth scalar function, then div $\nabla \phi = 0$.

(vi) If S is the graph of z = g(x, y) for $0 \le x \le 2$ and $0 \le y \le 2$ (with g smooth), then the surface area of S is given by

$$\int_0^2 \int_0^2 \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2} \, dx \, dy.$$

(vii) If **G** is a vector potential associated with a 3D vector field **F** then so is $\mathbf{G} + \langle 2, 4, 6 \rangle$.

(viii) The area of region R bounded by a curve $\mathcal C$ (with the positive orientation) is given by the line integral

$$\int_{\mathcal{C}} y \, dx.$$

(ix) If a 3D vector field **F** is irrotational in $D = \left\{ (x, y, z) \middle| x^2 + y^2 + z^2 < 2 \right\}$, then for any closed curve C lying in D,

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 0.$$

(x) If a 2D vector field **F** is irrotational in $D = \left\{ (x, y) \middle| 0 < x^2 + y^2 < 2 \right\}$, then for any closed curve \mathcal{C} lying in D,

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 0.$$

Question 2 a) (5 pts) Suppose a wire is bent into the shape of the parametrized curve

$$x(t) = 5t^3$$
 $y(t) = 2 + t^4$ $z(t) = 4t + 3$,

from point (0, 2, 3) to (5, 3, 7). Suppose the mass density of the wire is given by $\rho(x, y, z) = xyz$. Write down an integral with respect to t whose value gives the mass of the wire (do **not** evaluate the integral).

b) (5 pts) Let $\mathbf{F} = \langle 2xy^2z^2, 2yx^2z^2, 2zx^2y^2 \rangle$. Evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ where \mathcal{C} is curve from (1,0,3) to (0,1,2) lying on the intersection of the cylinder $x^2 + y^2 = 1$ and plane y + z = 3. Here, you must give a final numerical value to the integral.

Question 3 a) (5 pts) Let $\mathbf{F} = \langle 1, 2y + 2z, y + z \rangle$. Consider the circle lying in the plane y + z = 3 with centre (0, 1, 2) and radius 1. Let \mathcal{S} be part of the plane which lies inside this circle with normal pointing upwards. What is the flux

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}?$$

. .

b) (5 pts) Compute the flux integral

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S},$$

where $\mathbf{F} = \langle x, -xy, z \rangle$ and S is the part of the sphere $x^2 + y^2 + z^2 = 4$ which lies in the cylinder $x^2 + y^2 = 1$ above the xy plane with unit normal pointing upwards. You may leave your answer as a iterated double integral with respect to x and y.

Question 4 (10 pts) Use the Divergence Theorem to find the flux of

$$\mathbf{F} = \langle 2x + y^4 + 2z^2, ze^y + 2y, x \sin y + 3z \rangle,$$

out of the region bounded by the planes z = 0, z = 2, x = 3, x = 5, y = 1, and y = 3. That is, find

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S},$$

where \mathcal{S} is the boundary of this region bounded (oriented with the outward normal).

Question 5 (10 pts) I want you to use Stokes's Theorem to evaluate the circulation

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r},$$

where C is the curve of intersection of the cylinder $x^2 + y^2 = 1$ and the parabolic sheet $z = y^2$ with orientation induced by the upward normal to the parabolic sheet. I will not tell you what the **F** is but rather I will tell you its curl:

$$\operatorname{curl} \mathbf{F} = \langle z^3 y + x, -2y, 5x^2 + z \rangle.$$

Question 6 a) (5 pts) Let S be the boundary of a square box of side length $\frac{1}{10}$ centred at the point (1,2,3). Suppose **F** is a smooth vector field whose divergence at the point (1,2,3) is given by 2. Use only this information to **approximate** the flux of **F** out of S, i.e.

$$\int_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}.$$

b) (5 pts) Let **F** be a smooth 3D vector field and let C_{ϵ} denote a circle with radius ϵ centred at the origin lying in the plane x + y + z = 0. Give C_{ϵ} the orientation induced by the normal $\langle 1, 1, 1 \rangle$. What is

$$\lim_{\epsilon \to 0^+} \frac{1}{2\pi\epsilon} \int_{\mathcal{C}_{\epsilon}} \mathbf{F} \cdot d\mathbf{r} ?$$

Note here we are taking the limiting value of the **circulation per unit circumference**, not the **circulation per unit area**. You **must explain your reasoning**.