1. Use the Divergence theorem in 2D to prove (show) Greens Theorem. The Divergence theorem

in 2D:
//D(V«F)dAzjéFﬁds (1)

where i1 is the outward-pointing unit normal to the boundary. Consider dr = (dz, dy) to be a vector
tangential to the curve, C, then the outward normal vector, n = (dy, —dz). To normalize this, divide
by the length \/dz? + dy? which, by definition, is ds; these cancel, yielding fids = (dy, —dz). Then
if we define F = (M, —L), expand the left side of Equation 1 and use the above result on the right

side, // (?_Ai _%) dA:i(Ldz+Mdy)

Green’s Theorem

2. Let f(z) be defined for -5 < z < 5 by

z if —5<z<0
z2 if0<z<?2

F@) =3, 9 if2<c<a &)

0 ifd<z<5b

The complete Fourier series is given as:

a:)mag-%Zancos( z >+b sm(—q}i—{) 3)

% = 57 / f(z)dz
1 nnr
= Zj/_[, f(m?cos (T) dz
1 [t . [/nTT
= E/—L f(x)sin (-—L——) dx
Using L = 5 and splitting the domain of the function into separate integrals yields:
1 /5 1 0 2 4 5
aa—.———-/ f(z)d:r:-——-(/ xdsc+/ xzdz+/(x—2)dx+/ Od:t)
10 /s 10 \Js 0 2 4

1 25 8 47



_.;./if(:t)cos n¢x)d$w%(iimcgs(n5 )dx+/2:c cos( )dx'{»]é(rw.?)cos(z%f)dx)

5(1 - cos(mr)) (47?n? — 50) sin (222) + 207n cos (2’-;—‘3) +27&% sin (#2%) — 5cos (%2) + 5cos (4zz)
n2n? n3ns n2n2

/f ; mm)dx:é([.Z:z:sin(%)dm%»fzx?‘sin(&gf)d:r+/4(:r-2)5in( ) )

—5 cos(nr) . (50 — 47%n?) cos (222 + 207n sin (2) — 50 2mn cos (#22) + 5sin (222) — 5sin (4£2)
nw ndm3 n2x?

b, =

] a, (approximation of integrals)

n 05 £ cos (”“) dzx 02 % cos (m) dx f; L@g_22 cos (ﬁ%—“i) dz sum

1 1.01321 0.303471 -0.192207 1.124474
2 0 -0.154138 -0.16113 -0.315268
3 0.112579 -0.396515 0.264754 -0.019182
4 0 -0.23963 -0.128949 -0.368579
5 0.0405285 0.0810569 0 0.1215854
6 0 0.212115 0.0466325 0.2587475
7 0.0206778 0.0706923 -0.0749352 0.0164349
8 0 -0.117313 0.0845327 -0.0327803
9 0.0125088 -0.124712 -0.0485699 -0.1607731
10 0 0.0202642 0 0.0202642

[ b, (approximation of integrals) |

n fi)5 Lsin (“22) da 02 “; sin (222) dx f; (mg2) n (222) dx sum

1 1.59155 0.419528 0.331011 2.342089
2 -0.795775 0.448164 -0.29326 -0.640871
3 0.530516 0.102969 0.0210453 0.6545303
4 -0.397887 -0.236226 0.140261 -0.493852
5 0.31831 -0.254648 -0.127324 -0.063662
6 -0.265258 -0.0171995 0.0807273 -0.2017302
7 0.227364 0.162957 -0.0440137 0.3463073
8 -0.198944 0.10445 -0.0124098 -0.1069038
9 0.176839 -0.0690386 0.0594983 0.1672987
10 -0.159155 -0.127324 -0.063662 -0.350141




i) Plot the first 3 terms (n = 1,2,3) of the Fourier series (blue) with the periodic extension of

f(z) (black)

ii) Plot the first 3 terms (n = 1,2,3...10) of the Fourier series (red) with the periodic extension of

£(z) (black)
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Prerequisites:

Leok up the basics about the funcmons cos, sin, cosh, sinh on your all time favorite Wikipedia.
4 cosh(z) = sinh(z) Yz € R and - sinh(z) = cosh(z) Yz € R.

:c SN cos(z) and z — cosh(z) are even functions.

x — sin(z) and z — sinh(z) are odd functions.

cosh(z) > 1 Vz € R and cosh(z) = 1 ==z = (.

@ — sinh(z) is strictly increasing on R and sinh(z) = 0 <= 2z = 0.

Exercise fj(a) Find the eigenfunctions and eigenvalues of y”/(z) = —Ay(z) , defined on the interval 0 < z <
L, (0) =0=y(L), A € R. We will solve for any nonzero L, in particular the result holds for L = .

Remark One can show that the differential operator 3‘1‘;5 operating on the collection of functions satisfying the
above ODE and boundary conditions is self-adjoint with respect to the usual inner product. (See Sturm-Liouville
theory). Therefore we may assume that the eigenvalues (A) are real.

o If A = 0, the general solution to the differential equation is y(z) = Az + B for any constants A and B.
¥ (0)=0= A=0and y(L) =0= B =0. So A =0 is not an eigenvalue.

o If A < 0,let A = —u?. Then the general solution to the differential equation is y(z) =_Acosh(ux)+ Bsinh(uz)
for any constants A and B, or equivalently Ae#* + Be™H* for any constants A and B.

¥’(0) = 0 = Bpu = 0 and since we are assuming A < 0, i % 0 and we must have B = 0.

y(L) = 0 = Acosh(uL) = 0. Since & — cosh(z) is a strictly positive function on R, we conclude 4 = 0.
So there aren’t any eigenvalues for A < 0.

e If A >0, let A = p2. Then the general solution to the differential equation is y(x) = Acos(uz) + Bsin(ux)
for any constants A and B, or equivalently Ae*** + Be~*#* for any constants A and B.

3 (0) = 0 = Bpu = 0 and since we are assuming A > 0, we must have B = 0.

y(L) = 0 == Acos(uL) = 0. In order to avoid the trivial solution, we must have puL = (2n+1)§,n € Z =
A= p? = (@202 4y ¢ 7 In order to avoid repetition we restrict n € N (including 0).

We conclude that the eigenvalues are A\, = (@gﬁ)z,n = 0,1,2,... and the eigenfunctions corresponding to the
eigenvalues A, are y,(x) = A,, cos( —(—23%})13:) ‘~

(b) Find the eigenfunctions and eigenvalues of y”(z) = ~Ay(z) , defined on the interval 0 < 2 < 2L, y(0) =
y(2L), ¥'(0) = ¢'(2L), A € R. We will solve for any nonzero L, in particular the result holds for 2L = 2. It
turns out to be trickier to work on [0, 2L] for periodic boundary conditions, and it is easier to work on an interval
that is symmetric around 0, i.e. [-L, L]. We essentially shift to the left by L. So the boundary conditions become

y(=L) =y(L) and y'(~L) = y/'(L).

The general solutions are the same as in (a) since it is the same ODE.



e For A=0, y(—L) = ~AL + B = y(L) = AL+ B => A = 0. Moreover, y/'(—L) = y/(L) is satisfied by the
constant function. So A = 0 is an eigenvalue with eigenfunction y(z) = B for any constant B.

o If A <0, y(—L) = Acosh(—plL) + Bsinh(—ulL) = y(L) = Acosh(uL) + Bsinh(uL) == 2Bsinh(pL) = 0.
Since p # 0, L # 0, we must have B = 0.

y'(—=L) = pAsinh(—pL) + B cosh(—pL) = ¢/ (L) = pAsinh(uL) + pB cosh(uL) == 2uAsinh(ul) = 0. Since
i # 0, L # 0, we must have A = 0.
So there aren’t any eigenvalues for A < 0.

o If A > 0, y(—~L) = Acos(—plL) + Bsin(—pL) = y(L) = Acos(uL) + Bsin(pL) = 2Bsin(ul) = 0.
Y (—L) = —pAsin{—pu ) pBeos(—ply =y (L) = —pAsin{ul) — pBcos(pL) == 2uAsin(ul) = 0. Since
i # 0, we must have sin{uL) = 0 in order to avoid the trivial solution. Thus pL = nn,n € Z\ {0}, and so the
eigenvalues are A, = —“—E’%— n € N\ {0} (again avoiding repetition) and the eigenfunctions are A, cos(*f*
and B, sin(®F*).

To conclude, on [-L, L], the eigenvalues are 0 with eigenfunction y(z) = constant, and for n = 1,2,3, there are 2
eigenfunctions for the eigenvalue A,, = i"-;%’l, namely, A, cos(®2£) and B, sin(%£%)

On [0, 2L], the eigenvalues are 0 with eigenfunction y(z) = constant, and for n = 1,2,3..., there are 2 eigen-
functions per eigenvalue, namely, A, cos(mv}:»l—“-}) and B, sin( M)

Exercise 8 Solve V2u(x,y) = 0 on the square [0,2] x [0,1] with Dirichlet boundary conditions:
Ve € [0,2], u(z,0) = u(x,1) = 0; ¥y € [0,1], u(0,y) =0, u(2,y) = 3sin(my).

Assuming that u(z,y) = X(2)Y (y), we get — );’((f)) = “;/((3;) = A constant. To decide which ODE to solve first,

it is advised to look at the boundary conditions. u(z,0) = u(z,1) = 0 = X(2)Y(0) = X(z)Y (1) = 0. Since this
must be so for all x, we conclude Y(0) = 0 = Y(1). So we have a well posed Sturm Liouville eigenvalue problem
for the equation in y. Meanwhile, v.(0,y) = 0, «(2,y) = 3sin(my) = X (0) = 0, but no information about X (1) nor
X'(1). So the ODE in x is not a well posed Sturin Liouville problem.

—n?7? and eigenfunc- .

Solving the equation in y with the above boundary conditions yields the eigenvalues A, =
f/
tions Yy (y) = By sin(nmy), B, are arbitrary constants and n = 1,2,3... The general solution to —= (; = —n?n?is

Xn(z) = Cpcosh(nrz) + Dy, sinh(nwz). X(0) =0 = X,(z) = Dy sinh(nrz).

Forn=1,2,3..., Xn(2)Y,(y) solves the PDE and 3 out of the 4 boundary conditions. By linearity, > oo, Bn sin(nmy) sinh(nnz)
also solves the PDE and satisfies 3 out the 4 boundary conditions.

Finally, u(2,y) = 3sin(ry) = > .7, B, sin{nny)sinh(2n7) = 3sin(ry), which we recognize as a Fourrier sine
series. By inspection, B, sinh(2nx) = 3 if n = 1, BB, = 0 otherwise.

The solution to the problem is u(z,y) = 22"
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