On the notion of flat 2-functors

(joint work with Emilia Descotte and Martin Szyld)

Let (\mathcal{I}, Σ) be a pair where \mathcal{I} is a 2-category and Σ a distinguished 1-subcategory. A σ -cone for a 2-functor $\mathcal{I} \longrightarrow \mathcal{C}$ is a lax cone such that the 2-cells corresponding to the distinguished arrows are invertible, σ -limits are as usual the universal σ -cones. Similarly we define σ -dicones and σ -ends for 2-functors $\mathcal{A}^{op} \times \mathcal{A} \longrightarrow \mathcal{B}$.

The beautiful thing is that σ -ends can be expressed as σ -limits. This is an important fact of limits and ends in category theory that was not available in 2-dimensional category theory.

We introduce the notion of σ -filtered pair which generalises 2-filterness, and we develop a successful theory of flat 2-functors. We define a 2-functor $\mathcal{A} \xrightarrow{P} \mathcal{C}at$ to be *flat* when its left bi-Kan extension $\mathcal{H}om_s(\mathcal{A}^{op}, \mathcal{C}at) \xrightarrow{P^*} \mathcal{C}at$ along the Yoneda 2-functor $\mathcal{A} \xrightarrow{h} \mathcal{H}om_s(\mathcal{A}^{op}, \mathcal{C}at)$ is left exact (where $\mathcal{H}om_s(\mathcal{A}^{op}, \mathcal{C}at)$ denotes the 2-category of 2-functors, 2-natural transformations and modifications, and by left exact we understand preservation of finite weighted bilimits). The main result is:

A 2-functor $\mathcal{A} \xrightarrow{P} \mathcal{C}at$ is flat if and only if there is a σ -filtered pair $(\mathcal{I}^{op}, \Sigma)$, a 2-diagram $\mathcal{I} \xrightarrow{X} \mathcal{A}$, and P is pseudo-equivalent to the σ -bicolimit of the composition $\mathcal{I}^{op} \xrightarrow{X} \mathcal{A}^{op} \xrightarrow{h} \mathcal{H}om_s(\mathcal{A}, \mathcal{C}at).$

This establishes that the 2-category of *points* of the "2-topos" of 2-presheaves $\mathcal{H}om_s(\mathcal{A}^{op}, \mathcal{C}at)$ (\mathcal{A} small), is equivalent to the 2-category σ - $\mathcal{P}ro(\mathcal{A})$ of σ -pro-objects of \mathcal{A} . In other words, the 2-category of *models* is equivalent to the 2-category σ - $\mathcal{I}nd(\mathcal{A}^{op})$ of σ -ind-objects of \mathcal{A}^{op} .