Elementary amenable groups and the space of marked groups

Phillip Wesolek (joint with Jay Williams)

Binghamton University

McGill Seminar on Logic, Category Theory, and Computation

Phillip Wesolek (joint with Jay Williams)

Elementary amenable groups

March, 2017 1 / 28

A topological space is **Polish** if it is separable and admits a complete compatible metric.

A topological space is **Polish** if it is separable and admits a complete compatible metric.

Definition

A (Polish) **parameter space** for a family of isomorphism types of mathematical objects \mathcal{X} is a (Polish) topological space X with a surjective function $\phi : X \to \mathcal{X}$.

< □ > < □ > < □ > < □ >

A topological space is **Polish** if it is separable and admits a complete compatible metric.

Definition

A (Polish) **parameter space** for a family of isomorphism types of mathematical objects \mathcal{X} is a (Polish) topological space X with a surjective function $\phi : X \to \mathcal{X}$.

Remark

If X is well-chosen, set-theoretic properties of X reflect mathematical properties of \mathcal{X} and vice versa.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

4 A N

3 ×

Definition (Grigorchuk)

The space of marked groups is

$$\mathscr{G}_{\omega} := \{\mathbb{F}_{\omega} / N \mid N \trianglelefteq \mathbb{F}_{\omega}\}$$

with the subspace topology inherited by identifying \mathbb{F}_{ω}/N with *N*.

• • • • • • • • • • • • • •

Definition (Grigorchuk)

The space of marked groups is

$$\mathscr{G}_{\omega} := \{\mathbb{F}_{\omega} / N \mid N \trianglelefteq \mathbb{F}_{\omega}\}$$

with the subspace topology inherited by identifying \mathbb{F}_{ω}/N with N.

• \mathscr{G}_{ω} is a compact Polish space.

- **→ → →**

Definition (Grigorchuk)

The space of marked groups is

$$\mathscr{G}_{\omega} := \{\mathbb{F}_{\omega} / N \mid N \trianglelefteq \mathbb{F}_{\omega}\}$$

with the subspace topology inherited by identifying \mathbb{F}_{ω}/N with N.

- \mathscr{G}_{ω} is a compact Polish space.
- \mathscr{G}_{ω} parametrizes the class of countable groups.

- **→ → →**

A discrete group is **amenable** if it admits a finitely additive left invariant probability measure.

A discrete group is **amenable** if it admits a finitely additive left invariant probability measure. The class of these groups is denoted by A.

4 A N

A discrete group is **amenable** if it admits a finitely additive left invariant probability measure. The class of these groups is denoted by A.

Examples: finite groups, abelian groups, $\mathbb{Z} \times A_5$, $\mathbb{Z} \wr \mathbb{Z}$, Grigorchuk group,...

A discrete group is **amenable** if it admits a finitely additive left invariant probability measure. The class of these groups is denoted by A.

Examples: finite groups, abelian groups, $\mathbb{Z} \times A_5$, $\mathbb{Z} \wr \mathbb{Z}$, Grigorchuk group,...

Non-examples: Non-abelian free groups, non-elementary hyperbolic groups, $SL_n(\mathbb{Z}),...$

Fact

The class of amenable groups

Fact

The class of amenable groups

contains all finite groups and all abelian groups and

Fact

The class of amenable groups

- contains all finite groups and all abelian groups and
- is closed under taking group extensions, subgroups, quotients, and directed unions.

Definition (\sim 57)

The class of **elementary amenable groups**, denoted by EG, is the smallest class of groups that

A D M A A A M M

Definition (\sim 57)

The class of **elementary amenable groups**, denoted by EG, is the smallest class of groups that

contains all finite groups and all abelian groups and

Definition (\sim 57)

The class of **elementary amenable groups**, denoted by EG, is the smallest class of groups that

- contains all finite groups and all abelian groups and
- is closed under taking group extensions, subgroups, quotients, and directed unions.

The set of amenable marked groups is a G_{δ} set - i.e.

The set of amenable marked groups is a G_{δ} set - i.e. a countable intersection of open sets.

< A >

The set of amenable marked groups is a G_{δ} set - i.e. a countable intersection of open sets.

Question

Is EG a Borel set in \mathscr{G}_{ω} ?

4 A N

The set of amenable marked groups is a G_{δ} set - i.e. a countable intersection of open sets.

Question

Is EG a Borel set in \mathscr{G}_{ω} ?

Group-theoretic translation

Is there a "nice" characterization of elementary amenable groups?

Let X be a Polish space.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let X be a Polish space. A set $A \subseteq X$ is **analytic** if there is a Polish space Y and a continuous map $\psi : Y \to X$ such that $\psi(Y) = A$.

Let *X* be a Polish space. A set $A \subseteq X$ is **analytic** if there is a Polish space *Y* and a continuous map $\psi : Y \to X$ such that $\psi(Y) = A$. A set $B \subseteq X$ is **coanalytic** if $X \setminus B$ is analytic.

Borel sets are coanalytic

- Borel sets are coanalytic
- There are sets that are coanalytic but non-Borel. (Souslin)

- Borel sets are coanalytic
- There are sets that are coanalytic but non-Borel. (Souslin)
- Analytic or coanalytic sets require "uncountable information" to define,

- Borel sets are coanalytic
- There are sets that are coanalytic but non-Borel. (Souslin)
- Analytic or coanalytic sets require "uncountable information" to define, while Borel sets are definable with "countable information."

Theorem (W.–Williams, 15)

The set of elementary amenable marked groups is coanalytic and non-Borel.

A >

Theorem (W.-Williams, 15)

The set of elementary amenable marked groups is coanalytic and non-Borel.

Group-theoretic translation

There is no "nice" definition of elementary amenability.

Theorem (W.-Williams, 15)

The set of elementary amenable marked groups is coanalytic and non-Borel.

Group-theoretic translation

There is no "nice" definition of elementary amenability. Indeed, we show it is characterized by a chain condition.

Theorem (W.-Williams, 15)

The set of elementary amenable marked groups is coanalytic and non-Borel.

Group-theoretic translation

There is no "nice" definition of elementary amenability. Indeed, we show it is characterized by a chain condition.

Corollary (Grigorchuk, 83)

 $EG \subsetneqq A.$

Outline of proof

Image: A match a ma

Let $\mathbb{N}^{<\mathbb{N}}$ denote the collection of finite sequences of natural numbers.

Let $\mathbb{N}^{<\mathbb{N}}$ denote the collection of finite sequences of natural numbers.

Definition

A tree $T \subset \mathbb{N}^{<\mathbb{N}}$ is a subset closed under taking initial segments.

Let $\mathbb{N}^{<\mathbb{N}}$ denote the collection of finite sequences of natural numbers.

Definition

A tree $T \subset \mathbb{N}^{<\mathbb{N}}$ is a subset closed under taking initial segments. A tree T is well-founded if there are no infinite branches.

Let $\mathbb{N}^{<\mathbb{N}}$ denote the collection of finite sequences of natural numbers.

Definition

A tree $T \subset \mathbb{N}^{<\mathbb{N}}$ is a subset closed under taking initial segments. A tree T is well-founded if there are no infinite branches.

Observation

The set of trees, denoted by Tr, is a compact space

Let $\mathbb{N}^{<\mathbb{N}}$ denote the collection of finite sequences of natural numbers.

Definition

A tree $T \subset \mathbb{N}^{<\mathbb{N}}$ is a subset closed under taking initial segments. A tree T is well-founded if there are no infinite branches.

Observation

The set of trees, denoted by Tr, is a compact space

Outline of the proof

() Via a decomposition procedure, we build a Borel map $\Phi : \mathscr{G}_{\omega} \to \text{Tr.}$

< A >

Outline of the proof

- Via a decomposition procedure, we build a Borel map $\Phi : \mathscr{G}_{\omega} \to \text{Tr.}$
- **2** We prove that $G \in EG$ if and only if $\Phi(G)$ is well-founded.

Outline of the proof

- Via a decomposition procedure, we build a Borel map $\Phi : \mathscr{G}_{\omega} \to Tr$.
- **2** We prove that $G \in EG$ if and only if $\Phi(G)$ is well-founded.
- Applying classical results in descriptive set theory and group theory, we deduce that EG is coanalytic and non-Borel.

Decomposition trees

Image: A math a math

Question

How can we take apart an elementary amenable group "from above?"

Question

How can we take apart an elementary amenable group "from above?"

Observation (Chou, Osin)

A non-trivial finitely generated elementary amenable group has a non-trivial finite or abelian quotient.

Exhaust the group by finitely generated subgroups.

 Exhaust the group by finitely generated subgroups. Consider these subgroups.

- Exhaust the group by finitely generated subgroups. Consider these subgroups.
- Passing to the commutator subgroup of each eliminates the abelian quotient.

- Exhaust the group by finitely generated subgroups. Consider these subgroups.
- Passing to the commutator subgroup of each eliminates the abelian quotient.
- Intersecting some of the finite index subgroups of each takes care of some of the finite quotients.

- Exhaust the group by finitely generated subgroups. Consider these subgroups.
- Passing to the commutator subgroup of each eliminates the abelian quotient.
- Intersecting some of the finite index subgroups of each takes care of some of the finite quotients. (Careful!)

- Exhaust the group by finitely generated subgroups. Consider these subgroups.
- Passing to the commutator subgroup of each eliminates the abelian quotient.
- Intersecting some of the finite index subgroups of each takes care of some of the finite quotients. (Careful!)
- Repeat.

• Define
$$R_n(G) := \langle g_0, \ldots, g_n \rangle$$
.

• Define
$$R_n(G) := \langle g_0, \ldots, g_n \rangle$$
.

2 Put
$$\mathcal{N}_m(G) := \{N \trianglelefteq G \mid |G : N| \le m\}$$
 and

• Define
$$R_n(G) := \langle g_0, \ldots, g_n \rangle$$
.

2 Put
$$\mathcal{N}_m(G) := \{ N \trianglelefteq G \mid |G : N| \le m \}$$
 and define

$$S_m(G) := [G, G] \cap \bigcap \mathcal{N}_m(G).$$

$$S_m(G) := [G, G] \cap \bigcap \mathcal{N}_m(G).$$

Note

A marked group comes with a preferred enumeration.

Phillip Wesolek (joint with Jay Williams)

Elementary amenable groups

March, 2017 16 / 28

4 A N

• Put $\emptyset \in T^k(G)$ and let $G_{\emptyset} := G$.

- Put $\emptyset \in T^k(G)$ and let $G_{\emptyset} := G$.
- Suppose we have $s \in T^k(G)$ and G_s . If $G_s \neq \{e\}$,

- Put $\emptyset \in T^k(G)$ and let $G_{\emptyset} := G$.
- Suppose we have $s \in T^k(G)$ and G_s . If $G_s \neq \{e\}$, put $s^{\frown} n \in T^k(G)$ and $G_{s^{\frown} n} := S_{|s|+k} (R_n(G_s))$.

- Put $\emptyset \in T^k(G)$ and let $G_{\emptyset} := G$.
- Suppose we have $s \in T^k(G)$ and G_s . If $G_s \neq \{e\}$, put $s^{\frown} n \in T^k(G)$ and $G_{s^{\frown} n} := S_{|s|+k} (R_n(G_s))$.

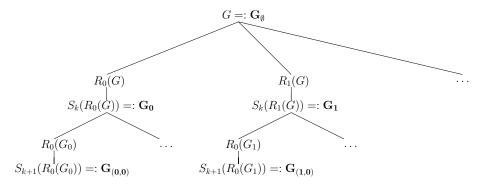
Definition

 $T^{k}(G)$ is the **decomposition tree** of G with offset k.

The decomposition tree $T^k(G)$

Phillip Wesolek (joint with Jay Williams)

The decomposition tree $T^k(G)$



For G a marked group, the following are equivalent:

- B

For *G* a marked group, the following are equivalent:

 $\bigcirc \quad G \in \mathrm{EG} \; .$

• • • • • • • • • • • •

For *G* a marked group, the following are equivalent:

- $G \in EG$.
- 2 $T^k(G)$ is well-founded for all $k \ge 1$.

- E - N

For *G* a marked group, the following are equivalent:

- $G \in EG$.
- 2 $T^k(G)$ is well-founded for all $k \ge 1$.
- $T^k(G)$ is well-founded for some $k \ge 1$.

For G a marked group, the following are equivalent:

- $G \in EG$.
- 2 $T^k(G)$ is well-founded for all $k \ge 1$.
- $T^k(G)$ is well-founded for some $k \ge 1$.

Idea of proof.

(2) \Leftrightarrow (3): This is an observation about the rank of well-founded decomposition trees.

For G a marked group, the following are equivalent:

- $G \in EG$.
- 2 $T^k(G)$ is well-founded for all $k \ge 1$.
- $T^k(G)$ is well-founded for some $k \ge 1$.

Idea of proof.

(2) \Leftrightarrow (3): This is an observation about the rank of well-founded decomposition trees.

(1) \Rightarrow (2): The collection of groups with well-founded decomposition trees has the same closure properties as EG.

< ロ > < 同 > < 回 > < 回 >

For G a marked group, the following are equivalent:

- $G \in EG$.
- 2 $T^k(G)$ is well-founded for all $k \ge 1$.
- $T^k(G)$ is well-founded for some $k \ge 1$.

Idea of proof.

(2) \Leftrightarrow (3): This is an observation about the rank of well-founded decomposition trees.

(1) \Rightarrow (2): The collection of groups with well-founded decomposition trees has the same closure properties as EG.

(2) \Rightarrow (1): Induction on the rank of a decomposition tree.

Recall that

$$\mathcal{N}_n(G) := \{ N \trianglelefteq G \mid |G:N| \le n \}$$

Recall that

$$\mathcal{N}_n(G) := \{ N \trianglelefteq G \mid |G:N| \le n \}$$

Corollary

A group G is elementary amenable if and only if there is no infinite descending sequence of finitely generated subgroups

$$K_1 \geq K_2 \geq \ldots$$

such that

- B

Recall that

$$\mathcal{N}_n(G) := \{ N \trianglelefteq G \mid |G:N| \le n \}$$

Corollary

A group G is elementary amenable if and only if there is no infinite descending sequence of finitely generated subgroups

$$K_1 \geq K_2 \geq \ldots$$

such that $K_n \neq \{e\}$ and

Recall that

$$\mathcal{N}_n(G) := \{ N \trianglelefteq G \mid |G:N| \le n \}$$

Corollary

A group G is elementary amenable if and only if there is no infinite descending sequence of finitely generated subgroups

 $K_1 \geq K_2 \geq \ldots$

such that $K_n \neq \{e\}$ and $K_{n+1} \leq [K_n, K_n] \cap \bigcap \mathcal{N}_n(K_n)$ for all $n \geq 1$.

EG is coanalytic and non-Borel

• For fixed k, the map $\Phi_k : \mathscr{G}_\omega \to \operatorname{Tr}$ by $G \mapsto T^k(G)$ is Borel.

- For fixed k, the map $\Phi_k : \mathscr{G}_\omega \to \operatorname{Tr}$ by $G \mapsto T^k(G)$ is Borel.
- Via our characterization, $EG = \Phi_k^{-1}(WF)$.

4 A N

- For fixed k, the map $\Phi_k : \mathscr{G}_\omega \to \operatorname{Tr}$ by $G \mapsto T^k(G)$ is Borel.
- Via our characterization, $EG = \Phi_k^{-1}(WF)$.

Proposition

EG is coanalytic in \mathscr{G}_{ω} .

- For fixed k, the map $\Phi_k : \mathscr{G}_\omega \to \operatorname{Tr}$ by $G \mapsto T^k(G)$ is Borel.
- Via our characterization, $EG = \Phi_k^{-1}(WF)$.

Proposition

EG is coanalytic in \mathscr{G}_{ω} .

Proof.

The set $WF \subset Tr$ is a coanalytic set.

Intuitive definition

A **coanalytic rank** is a ordinal-valued function which measures the complexity of $A \subseteq X$ relative to the topological space *X*.

Intuitive definition

A **coanalytic rank** is a ordinal-valued function which measures the complexity of $A \subseteq X$ relative to the topological space *X*.

Intuitive boundedness theorem

If $A \subseteq X$ is Borel, then any coanalytic rank admits a countable bound.

• There is a coanalytic rank $\rho: WF \rightarrow \omega_1$.

• • • • • • • • • • • •

- There is a coanalytic rank $\rho: WF \to \omega_1$.
- The map $\rho \circ \Phi_k : EG \to \omega_1$ is then a coanalytic rank.

4 A N

- B

- There is a coanalytic rank $\rho: WF \to \omega_1$.
- The map $\rho \circ \Phi_k : EG \to \omega_1$ is then a coanalytic rank.

Conclusion

To show EG is non-Borel, it suffices to show the least upper bound of $\rho \circ \Phi_k$ is ω_1 .

- There is a coanalytic rank $\rho: WF \to \omega_1$.
- The map $\rho \circ \Phi_k : EG \to \omega_1$ is then a coanalytic rank.

Conclusion

To show EG is non-Borel, it suffices to show the least upper bound of $\rho \circ \Phi_k$ is ω_1 .

Remark

Showing $\rho \circ \Phi_k$ is unbounded does not require finding groups in A \ EG.

-

We show $\rho \circ \Phi_k$ is unbounded by induction. Limit stage: Take direct sum.

Limit stage: Take direct sum.

Successor: Use the Hall, Neumann–Neumann, Osin embedding theorem:

4 A N

Limit stage: Take direct sum.

Successor: Use the Hall, Neumann–Neumann, Osin embedding theorem: *Every elementary amenable group embeds in a two generated elementary amenable group*.

Limit stage: Take direct sum.

Successor: Use the Hall, Neumann–Neumann, Osin embedding theorem: *Every elementary amenable group embeds in a two generated elementary amenable group*.

Theorem (W.–Williams)

 $\rho \circ \Phi_k$ is unbounded below ω_1 on EG_{fg}.

Limit stage: Take direct sum.

Successor: Use the Hall, Neumann–Neumann, Osin embedding theorem: *Every elementary amenable group embeds in a two generated elementary amenable group*.

Theorem (W.–Williams)

 $\rho \circ \Phi_k$ is unbounded below ω_1 on EG_{fg}.

Corollary

EG is non-Borel in \mathscr{G}_{ω} .

Questions

Question

What is the least upper bound on the rank of finitely presented elementary amenable groups?

Question

What is the least upper bound on the rank of finitely presented elementary amenable groups?

Question

Is the class of subexponentially amenable marked groups non-Borel?

Question

What is the least upper bound on the rank of finitely presented elementary amenable groups?

Question

Is the class of subexponentially amenable marked groups non-Borel?

Question (Cornulier)

What is the Cantor-Bendixson rank of \mathscr{G}_{ω} or \mathscr{G}_{2} ?

Thank you

・ロト ・日下 ・ ヨト ・