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Definition
A topological space is Polish if it is separable and admits a complete
compatible metric.

Definition
A (Polish) parameter space for a family of isomorphism types of
mathematical objects X is a (Polish) topological space X with a
surjective function φ : X → X .

Remark
If X is well-chosen, set-theoretic properties of X reflect mathematical
properties of X and vice versa.
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Let Fω be the free group on countably many generators and identify
P(Fω) with the cantor space {0,1}Fω =: 2Fω .

Definition (Grigorchuk)
The space of marked groups is

Gω := {Fω/N | N E Fω}

with the subspace topology inherited by identifying Fω/N with N.

• Gω is a compact Polish space.
• Gω parametrizes the class of countable groups.
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Definition
A discrete group is amenable if it admits a finitely additive left invariant
probability measure.

The class of these groups is denoted by A.

Examples: finite groups, abelian groups, Z× A5, Z o Z, Grigorchuk
group,...
Non-examples: Non-abelian free groups, non-elementary hyperbolic
groups, SLn(Z),...
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Fact
The class of amenable groups

1 contains all finite groups and all abelian groups and
2 is closed under taking group extensions, subgroups, quotients,

and directed unions.
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Definition (∼57)
The class of elementary amenable groups, denoted by EG, is the
smallest class of groups that

1 contains all finite groups and all abelian groups and
2 is closed under taking group extensions, subgroups, quotients,

and directed unions.
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Fact (folklore)
The set of amenable marked groups is a Gδ set - i.e.

a countable
intersection of open sets.

Question
Is EG a Borel set in Gω?

Group-theoretic translation
Is there a “nice” characterization of elementary amenable groups?
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Definition
Let X be a Polish space.

A set A ⊆ X is analytic if there is a Polish
space Y and a continuous map ψ : Y → X such that ψ(Y ) = A. A set
B ⊆ X is coanalytic if X \ B is analytic.

• Borel sets are coanalytic
• There are sets that are coanalytic but non-Borel. (Souslin)
• Analytic or coanalytic sets require “uncountable information” to

define, while Borel sets are definable with “countable information.”

Phillip Wesolek (joint with Jay Williams) Elementary amenable groups March, 2017 8 / 28



Definition
Let X be a Polish space. A set A ⊆ X is analytic if there is a Polish
space Y and a continuous map ψ : Y → X such that ψ(Y ) = A.

A set
B ⊆ X is coanalytic if X \ B is analytic.

• Borel sets are coanalytic
• There are sets that are coanalytic but non-Borel. (Souslin)
• Analytic or coanalytic sets require “uncountable information” to

define, while Borel sets are definable with “countable information.”

Phillip Wesolek (joint with Jay Williams) Elementary amenable groups March, 2017 8 / 28



Definition
Let X be a Polish space. A set A ⊆ X is analytic if there is a Polish
space Y and a continuous map ψ : Y → X such that ψ(Y ) = A. A set
B ⊆ X is coanalytic if X \ B is analytic.

• Borel sets are coanalytic
• There are sets that are coanalytic but non-Borel. (Souslin)
• Analytic or coanalytic sets require “uncountable information” to

define, while Borel sets are definable with “countable information.”

Phillip Wesolek (joint with Jay Williams) Elementary amenable groups March, 2017 8 / 28



Definition
Let X be a Polish space. A set A ⊆ X is analytic if there is a Polish
space Y and a continuous map ψ : Y → X such that ψ(Y ) = A. A set
B ⊆ X is coanalytic if X \ B is analytic.

• Borel sets are coanalytic

• There are sets that are coanalytic but non-Borel. (Souslin)
• Analytic or coanalytic sets require “uncountable information” to

define, while Borel sets are definable with “countable information.”

Phillip Wesolek (joint with Jay Williams) Elementary amenable groups March, 2017 8 / 28



Definition
Let X be a Polish space. A set A ⊆ X is analytic if there is a Polish
space Y and a continuous map ψ : Y → X such that ψ(Y ) = A. A set
B ⊆ X is coanalytic if X \ B is analytic.

• Borel sets are coanalytic
• There are sets that are coanalytic but non-Borel. (Souslin)

• Analytic or coanalytic sets require “uncountable information” to
define, while Borel sets are definable with “countable information.”

Phillip Wesolek (joint with Jay Williams) Elementary amenable groups March, 2017 8 / 28



Definition
Let X be a Polish space. A set A ⊆ X is analytic if there is a Polish
space Y and a continuous map ψ : Y → X such that ψ(Y ) = A. A set
B ⊆ X is coanalytic if X \ B is analytic.

• Borel sets are coanalytic
• There are sets that are coanalytic but non-Borel. (Souslin)
• Analytic or coanalytic sets require “uncountable information” to

define,

while Borel sets are definable with “countable information.”

Phillip Wesolek (joint with Jay Williams) Elementary amenable groups March, 2017 8 / 28



Definition
Let X be a Polish space. A set A ⊆ X is analytic if there is a Polish
space Y and a continuous map ψ : Y → X such that ψ(Y ) = A. A set
B ⊆ X is coanalytic if X \ B is analytic.

• Borel sets are coanalytic
• There are sets that are coanalytic but non-Borel. (Souslin)
• Analytic or coanalytic sets require “uncountable information” to

define, while Borel sets are definable with “countable information.”

Phillip Wesolek (joint with Jay Williams) Elementary amenable groups March, 2017 8 / 28



Theorem (W.–Williams, 15)
The set of elementary amenable marked groups is coanalytic and
non-Borel.

Group-theoretic translation
There is no “nice” definition of elementary amenability. Indeed, we
show it is characterized by a chain condition.

Corollary (Grigorchuk, 83)
EG $ A.
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Outline of proof
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Let N<N denote the collection of finite sequences of natural numbers.

Definition
A tree T ⊂ N<N is a subset closed under taking initial segments. A
tree T is well-founded if there are no infinite branches.

Observation
The set of trees, denoted by Tr, is a compact space
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Outline of the proof

1 Via a decomposition procedure, we build a Borel map Φ : Gω → Tr.

2 We prove that G ∈ EG if and only if Φ(G) is well-founded.
3 Applying classical results in descriptive set theory and group

theory, we deduce that EG is coanalytic and non-Borel.
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Decomposition trees
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Question
How can we take apart an elementary amenable group “from above?”

Observation (Chou, Osin)
A non-trivial finitely generated elementary amenable group has a
non-trivial finite or abelian quotient.
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A decomposition procedure

1 Exhaust the group by finitely generated subgroups. Consider
these subgroups.

2 Passing to the commutator subgroup of each eliminates the
abelian quotient.

3 Intersecting some of the finite index subgroups of each takes care
of some of the finite quotients. (Careful!)

4 Repeat.
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Suppose that G is a group with an enumeration.

1 Define Rn(G) := 〈g0, . . . ,gn〉.
2 Put Nm(G) := {N E G | |G : N| ≤ m} and define

Sm(G) := [G,G] ∩
⋂
Nm(G).

Note
A marked group comes with a preferred enumeration.
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For k ≥ 1 and G ∈ Gω, we define a tree T k (G) and associated marked
groups Gs ∈ Gω for each s ∈ T k (G) as follows:

• Put ∅ ∈ T k (G) and let G∅ := G.
• Suppose we have s ∈ T k (G) and Gs. If Gs 6= {e}, put san ∈ T k (G)

and Gsan := S|s|+k (Rn (Gs)).

Definition
T k (G) is the decomposition tree of G with offset k .
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The decomposition tree T k(G)

G =: G∅

R0(G)

Sk(R0(G)) =: G0

. . .

R0(G0)

Sk+1(R0(G0)) =: G(0,0)

. . . R0(G1)

Sk+1(R0(G1)) =: G(1,0)

. . .

R1(G)

Sk(R1(G)) =: G1
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Theorem (W.–Williams, 15)
For G a marked group, the following are equivalent:

1 G ∈ EG .
2 T k (G) is well-founded for all k ≥ 1.
3 T k (G) is well-founded for some k ≥ 1.

Idea of proof.
(2)⇔ (3): This is an observation about the rank of well-founded
decomposition trees.
(1)⇒ (2): The collection of groups with well-founded decomposition
trees has the same closure properties as EG.
(2)⇒ (1): Induction on the rank of a decomposition tree.
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Recall that
Nn(G) := {N E G | |G : N| ≤ n}

Corollary
A group G is elementary amenable if and only if there is no infinite
descending sequence of finitely generated subgroups

K1 ≥ K2 ≥ . . .

such that Kn 6= {e} and Kn+1 ≤ [Kn,Kn] ∩⋂Nn(Kn) for all n ≥ 1.
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EG is coanalytic and non-Borel
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• For fixed k , the map Φk : Gω → Tr by G 7→ T k (G) is Borel.

• Via our characterization, EG = Φ−1
k (WF ).

Proposition
EG is coanalytic in Gω.

Proof.
The set WF ⊂ Tr is a coanalytic set.
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Intuitive definition
A coanalytic rank is a ordinal-valued function which measures the
complexity of A ⊆ X relative to the topological space X .

Intuitive boundedness theorem
If A ⊆ X is Borel, then any coanalytic rank admits a countable bound.
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• There is a coanalytic rank ρ : WF → ω1.

• The map ρ ◦ Φk : EG→ ω1 is then a coanalytic rank.

Conclusion
To show EG is non-Borel, it suffices to show the least upper bound of
ρ ◦ Φk is ω1.

Remark
Showing ρ ◦Φk is unbounded does not require finding groups in A \EG.
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We show ρ ◦ Φk is unbounded by induction.

Limit stage: Take direct sum.
Successor: Use the Hall, Neumann–Neumann, Osin embedding
theorem: Every elementary amenable group embeds in a two
generated elementary amenable group.

Theorem (W.–Williams)
ρ ◦ Φk is unbounded below ω1 on EGfg .

Corollary
EG is non-Borel in Gω.
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Questions
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Question
What is the least upper bound on the rank of finitely presented
elementary amenable groups?

Question
Is the class of subexponentially amenable marked groups non-Borel?

Question (Cornulier)
What is the Cantor-Bendixson rank of Gω or G2?
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Thank you
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