The 2-localization of a Quillen's model category Eduardo Dubuc, McGill 2018

We refer to Quillen's notion of a category \mathcal{C} furnished with a *model* structure $\{\mathcal{W}, \mathcal{F}, co\mathcal{F}\}$ (weak equivalences, fibrations, cofibrations), and the construction of the localisation $\mathcal{C}[\mathcal{W}^{-1}]$ at \mathcal{W} as the homotopy category $\mathcal{H}o(\mathcal{C}, \mathcal{W})$, that is, the quotient by the congruence determined by homotopies in the sets $\mathcal{C}(X, Y)$ of morphisms of \mathcal{C} .

In this talk I will construct the 2-localisation $\mathcal{C}[\mathcal{W}^{-e}]$ at \mathcal{W} as the homotopy 2-category $\widetilde{\mathcal{H}}o(\mathcal{C}, \mathcal{W})$, a 2-category with the same arrows of \mathcal{C} , and where the homotopies determine the 2-cells, instead of a congruence.

A novel feature is the introduction of a generalisation of cylinder objects which allows the development of Quillen's theory of homotopies and the construction of the homotopy 2-category for an arbitrary category \mathcal{C} and a single arbitrary class $\mathcal{W} \subset \mathcal{C}$. There is a 2-functor $\widetilde{\mathcal{H}o}(\mathcal{C}, \mathcal{W}) \longrightarrow \mathcal{C}[\mathcal{W}^{-e}]$, which is an isomorphism if \mathcal{W} is *split generated* (an arrow f is split if there exists g such that fg = id or gf = id) and satisfies the 3 for 2 property.

When \mathcal{W} is the class of weak equivalences of a model category, and \mathcal{C} is the category of fibrant-cofibrant objects, taking the set of connected components of the hom categories we obtain Quillen's results.

This is a particular case of a joint work with Martin Szyld and Emilia Descotte, where we have developed a 2-dimensional version of a model category and its homotopy category. It corresponds to the case where the model bicategory is the trivial model bicategory determined by a model category.