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Abstract

The category of finite distributive sup semi-lattices (distributive
lattices and sup-preserving morphisms) is ∗-autonomous but not
compact. We also show that the category lacks equalizers.
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The category Sup

The category Sup of complete sup semi-lattices and sup preserving
morphisms is well known to be ∗-autonomous. In the talk, I will be
concentrating on the finite sup semi-lattics. A finite (or complete)
sup semi-lattice is obviously a lattice and so it makes sense to ask
that it be distributive. We will denote by FDSup the category of
finite distributive semi-lattices. We will show that it is
∗-autonomous, but not compact.
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Primer on ∗-autonomous categories

Recall that a ∗-autonomous is a category that is closed monoidal
with −◦ as internal hom, ⊗ as tensor, > as tensor unit, and a
“dualizing object” ⊥ satisfying the usual conditions, which include
that (A⊗ B)−◦C ∼= A−◦ (B −◦C ) and, in particular, with A∗

defined as A−◦⊥, the canonical map A // A∗∗ is an isomorphism.
From these isomorphisms several others follow.
In the case of Sup, the dual A∗ = Aop. If f : A // B is a
morphism, it is cocontinuous between cocomplete categories. Since
they are posets, the solution set condition is automatic and hence
f has a right adjoint g : B // A. Then f ∗ = gop : Bop // Aop.
Note that although g is continuous from B // A,
f ∗ = gop : B∗ // A∗ is cocontinuous.
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Compact ∗-autonomous categories

A ∗-autonomous category is said to be compact if for all objects A
and B we have A−◦B ∼= A∗ ⊗ B. Not very many such categories
are known, the prime example being finite dimensional vector
spaces over a field. Finite abelian groups would be another
example, except that neither the tensor unit nor the dualizing
object are finite.
An interesting example of a ∗-autonomous is the category of
complete sup semi-lattices. Both > and ⊥ are the 2 element chain.
At some point as I was preparing my monograph on ∗-autonomous
categories, someone (Max Kelly?) asked whether it was compact.
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Interlude on ∗-autonomous categories

1.

(A⊗ B)∗ = (A⊗ B)−◦⊥ ∼= A−◦ (B −◦⊥) = A−◦B∗

whence A⊗ B ∼= A−◦B∗ and that can be taken as a
definition if −◦ and ∗ are already given.

2.
A−◦B ∼= A−◦B∗∗ ∼= A−◦ (B∗−◦⊥)

∼= (A⊗ B∗)−◦⊥ = (A⊗ B∗)∗

which could be taken as a definition if ⊗ and ∗ are already
given.
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Interlude on compact ∗-autonomous categories

1.
(A⊗ B)∗ ∼= A−◦B∗ ∼= A∗ ⊗ B∗

2.
(A−◦B)∗ ∼= (A⊗ B)∗ ∼= A∗ ⊗ B ∼= A∗−◦B∗
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The counter-example for finite sup semi-lattices

Compactness would imply that

(A−◦B)∗ ∼= (A∗ ⊗ B)−◦⊥ ∼= A∗−◦ (B −◦⊥) = A∗−◦B∗

Now let

A = A∗ =

·

· · ·

·

B =

·

· ·

· · ·

·

����
????

????
����

��� ///

��� ///
��� ///

????
����

Thus would imply that A−◦B ∼= A−◦B∗. But it is possible to
directly calculate that there are exactly 88 sup-preserving maps
A // B, while there are 94 such maps A // B∗.
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Distributive lattices

Thinking about this recently, it occured to me that A and B are
not distributive. So what about the case of finite distributive
lattices? I leave the general complete case untouched. The
methods I will describe later clearly do not work outside of the
finite case, even leaving aside the question of what kind of
distributivity.
There are two separate quesions to be raised here.

1. Is FDSup ∗-autonomous?

2. Assuming it is, is it compact?

It turns out that the answer to the first question is yes and to the
second is no. The rest of this lecture will describe how to show
these.
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Bases

Let A be a finite sup semi-lattice. By an order basis (or simply
basis) for A, we mean a subset S ⊆ A such that

1. Every element of A is a sup of elements of S

2. If B is another finite sup semi-lattice, then any order
preserving map S // B extends to a unique sup-morphism
A // B

Likely the first condition follows from the uniqueness in the second.
Theorem. Every finite distributive sup semi-lattice has an order
basis.

10 / 23



Proof of theorem

If A0 ⊆ A is a (full) sup subsemi-lattice and a ∈ A, let A0[a]
denote the sup subsemi-lattice generated by A0 and a. Obviously,
it consists of all elements a0 ∨ a, with a0 ∈ A0. Note that this is
not necessarily a sublattice since it might not have the same infs as
A, but by hypothesis it has the same sups.
The theorem obviously follows from:
Lemma. Suppose A0 ⊆ A is a proper ideal that has a basis. Then
there is some element a ∈ A such that A[a] is an ideal and has a
basis.
Note that an ideal is a sub semi-lattice, although a proper ideal
cannot be a sublattice.
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Proof of lemma

Since A is finite and A0 is an ideal, there is at least one element
a ∈ A all of whose predecessors lie in A0. We claim that A0[a] is
an ideal. In fact, if a′ ≤ a0 ∨ a, with a0 ∈ A0, then
a′ = a′ ∧ (a0 ∨ a) = (a′ ∧ a0) ∨ (a′ ∧ a). Now a′ ∧ a0 ∈ A0 since A0

is an ideal. As for (a′ ∧ a) it is either a or it is in A0 by minimality
of a. In either case, a′ ∈ A[a].
Now let S0 be a basis of A0. Then I claim that S = S0 ∪ {a} is a
basis for A0[a]. That it sup-generates A0[a] is obvious.
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Proof of lemma, continued

So suppose that f : S // B is an order preserving map. Let
f0 : A0

// B be the unique extension f |S0 and set b = f (a). In
order to extend f to A0[a] we have to let f (a0 ∨ a) = f0(a0) ∨ b.
We must show that the extended f is well-defined. We claim that
if a0 ∈ A0 is an element such that a0 ≤ a, then f0(a0) ≤ b. For we
can write a0 = x1 ∨ · · · ∨ xk , xi ∈ S0. But then all these
xi ≤ a0 ≤ a so that f (xi ) ≤ b which implies that
f0(a0) = f (x1) ∨ · · · ∨ f (xn) ≤ b. Now if a0 ∨ a = a′0 ∨ a, we have

a0 = a0 ∧ (a0 ∨ a) = a0 ∧ (a′0 ∨ a) = (a0 ∧ a′0) ∨ (a0 ∧ a)

and both terms belong to A0. It follows that
f0(a0) = f0(a0 ∧ a′0) ∨ f0(a0 ∧ a). But then
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Proof of lemma, completed

f0(a0) ∨ b = f0(a0 ∧ a′0) ∨ f0(a0 ∧ a) ∨ b = f0(a0 ∧ a′0) ∨ b

since f0(a0 ∧ a) ≤ b. Similarly f0(a′0) ∨ b = f0(a0 ∧ a′0) ∨ b and so
the extension of f is well defined.
Finally, we must show that f preserves sup. We have

f ((a0 ∨ a) ∨ (a′0 ∨ a)) = f (a0 ∨ a′0 ∨ a)

= f0(a0 ∨ a′0) ∨ b = f0(a0) ∨ f0(a′0) ∨ b

= (f0(a0) ∨ b) ∨ (f0(a′0) ∨ b) = f (a0 ∨ a) ∨ f (a′0 ∨ a)

and a similar computation if only one of the two involves a.
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FDSup is closed

We must show that when A and B are distributive, so is A−◦B.
But given a basis S ⊆ A a map f : A // B is completely
determined by its restriction f |S . Moreover, f ≤ g iff f |S ≤ g |S .
It follows immediately that (f ∨ g)|S = f |S ∨ g |S and
(f ∧ g)|S = f |S ∧ g |S . But it is important to note that while the
pointwise inf of f and g is not the inf in A−◦B since that will not
usually preserve sup, the pointwise inf of f |S and g |S is still order
preserving and thus must be (f ∧ g)|S . This is the significance of
having a basis.
Since the inf and sup of f |S and g |S are calculated pointwise, the
distributivity A−◦B follows from that of B.
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FDSup is not compact

We begin with the distributive lattice A

⊥

a

b c

>

JJJJJJ

ttttt

JJJJJ

tttttt

Let B be an arbitrary lattice. A sup morphism f : A // B must
satisfy f (⊥) = ⊥, f (>) = f (b) ∨ f (c) and f (a) ≤ f (b) ∧ f (c).
Thus if we let f (b) = x , f (c) = y , and f (a) = z , we see that

A−◦B = {(x , y , z) ∈ B3 | z ≤ x ∧ y}

.
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FDSup is not compact, continued

Now let us do the same for A∗:

⊥

a b

c

>

JJJJJ
ttttt

JJJJJJ
tttttt

If B is an arbitrary lattice a sup morphism f : A∗ // B must
satisfy f (⊥) = ⊥, f (c) = f (a) ∨ f (b) and f (>) ≥ f (a) ∨ f (b).
Thus if we let f (a) = x , f (b) = y , and f (>) = z . We have that

A∗−◦B = {(x , y , z ∈ B3) | z ≥ x ∨ y}
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FDSup is not compact, continued

To repeat:

A∗−◦B = {(x , y , z ∈ B3) | z ≥ x ∨ y}

But this implies that

A∗−◦B∗ = {(x , y , z) ∈ B3 | z ≤ x ∧ y}

In other words A∗−◦B∗ ∼= A−◦B. But in order that Sup be
compact it is necessary that A∗−◦B∗ ∼= (A−◦B)∗. Thus if we can
find a distributive lattice B for which A−◦B is not isomorphic to
its dual, it follows that FDSup is not compact.
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FDSup is not compact, concluded

⊥

a

b c

>

DDDDDD

zzzzzz

DDDDDD

zzzzzz

We can, in fact, take B = A. The elements of A−◦A consists of
all (x , y , z) such that z ≤ x ∧ y , with the product order. It follows
that the atoms of A−◦A are (a,⊥,⊥) and (⊥, a,⊥). But A−◦A
has four coatoms: (b,>, b), (>, b, b), (c ,>, c), and (>, c, c).
Thus (A−◦A)∗ 6∼= (A∗−◦A∗) and we conclude:
Theorem. FDSup is not compact ∗-autonomous.
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Is FDSup closed under finite limits?

It is not hard to show that if it were, it would have to be
equational which would mean there was an equation involving only
sup and ⊥ that forced distributivity. This seems unlikely. I will
start with a counter example and then show how I found it.
We begin with 23 which can be described as the following lattice:

000

001 010 100

011 101 110

111

??????
������

���

���
??????

������
???

???

??????

������
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Finite limits?
The set of atoms is obviously a basis for 23. We let f : 23 // 23

be the map for which f (001) = 110, f (010) = 101, and
f (100) = 110. It follows that f (000) = 000 and
f (110) = f (101) = f (011) = f (111) = 111. Let g : 23 // 23 be
determined by g(001) = g(010) = g(100) = 111, from which it
follows that g(000) = 000 and
g(110) = g(101) = g(011) = g(111) = 111. It is obvious that the
equalizer of f and g is the lattice

000

011 101 110

111

2222222222

����������

DDDDD

zzzzz

which is not distributive.
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Finite limits?

I did not pull these maps out of thin air. As I mentioned above, if
FDSup had been closed under finite limits, it would be equational
over finite sets. The underlying functor has an adjoint X 7→ 2X

and then every object would be a quotient of a power of 2. In
particular, we have a surjection 23 // A, that takes the three
atoms to the three middle atoms of A. The kernel pair is also a
quotient of a power of 2, so we have a coequalizer
2X // // 23 // A, which dualizes to an equalizer A // 23 //// 2X

since all three are self-dual. I then constructed a simple example
using X = 3 and dualized it to give the present one.

22 / 23



What about A−◦B when A is infinite?

I don’t know the answer but if time permits I will show an attempt
that failed. First, the above argument works just as well when B is
infinite, so the only case that matters is when A is infinite. A good
categorist tries to write A = colimAi over all finite sublattices.
The arrows in this diagram are lattice inclusions and
A−◦B = lim(Ai −◦B). It looks like the RHS is a diagram of
distributive lattices and it is. The problem is that for this argument
to work, we must have the transition maps be lattice
homomorphisms. So we must show that if A1

// A2 is a lattice
homomorphism of finite distributive lattices, then
A2−◦B // A1−◦B is a lattice homomorphism. Is it?
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Map induced by a lattice homomorphism

No, it is not true even when B = 2. We give an example to show
A∗2

//A∗1 is not a lattice homomorphism while A1 is a sublattice of
A2.

⊥ ⊥

a b c

> >

??????

������

???????

������
A1 = A2 =

Let f : A1
// A2 be the inclusion such that f (a) = b. Then f has

a right adjoint g for which g(>) and g(⊥) = ⊥,
g(b) =

∨
{x | f (x) ≤ b} = a, while g(c) =

∨
{x | f (x) ≤ c} = ⊥.

This is not a lattice homomorphism and hence neither is its
opposite map which is f ∗.

24 / 23


