# Completions of subcategories of domains 

Michael Barr, John Kennison, Robert Raphael

McGill, Clark, Concordia

## Abstract

We have been studying the limit completion, in the category of commutative rings, of various subcategories of integral domains. Since any limit of domains is a semiprime ring (only nilpotent is 0 ), we will concentrate on the limit closure in that subcategory. This will complement the talk Bob gave two weeks ago

## Some subcategories of domains

- $\mathcal{A}_{\text {dom }}$, the category of domains;


## Some subcategories of domains

- $\mathcal{A}_{\text {dom }}$, the category of domains;
- $\mathcal{A}_{\text {fld }}$, the category of fields;
$\qquad$


## Some subcategories of domains

- $\mathcal{A}_{\text {dom }}$, the category of domains;
- $\mathcal{A}_{\text {fld }}$, the category of fields;
- $\mathcal{A}_{\text {pfld }}$, the category of perfect fields;
$\mathcal{A}_{\text {ic }}$, the category of integrally closed domains; - $\mathcal{A}_{\text {bez }}$, the category of Bézout domains;


## Some subcategories of domains

- $\mathcal{A}_{\text {dom }}$, the category of domains;
- $\mathcal{A}_{\text {fld }}$, the category of fields;
- $\mathcal{A}_{\text {pfld }}$, the category of perfect fields;
- $\mathcal{A}_{\text {ic }}$, the category of integrally closed domains;
$\mathscr{A}_{\text {bez }}$, the category of Bézout domains; - $\mathcal{A}_{\text {ica }}$, the category of absolutely integrally closed domains;


## Some subcategories of domains

- $\mathcal{A}_{\text {dom }}$, the category of domains;
- $\mathcal{A}_{\text {fld }}$, the category of fields;
- $\mathcal{A}_{\text {pfld }}$, the category of perfect fields;
- $\mathcal{A}_{\text {ic }}$, the category of integrally closed domains;
- $\mathcal{A}_{\text {bez }}$, the category of Bézout domains;
- $\mathscr{A}_{\text {ica, }}$, the category of absolutely integrally closed domains; - $\mathcal{A}_{\text {icp }}$, the category of perfect integrally closed domains;


## Some subcategories of domains

- $\mathcal{A}_{\text {dom }}$, the category of domains;
- $\mathcal{A}_{\text {fld }}$, the category of fields;
- $\mathcal{A}_{\text {pfld }}$, the category of perfect fields;
- $\mathcal{A}_{\text {ic }}$, the category of integrally closed domains;
- $\mathcal{A}_{\text {bez }}$, the category of Bézout domains;
- $\mathcal{A}_{\text {ica }}$, the category of absolutely integrally closed domains;
- $\mathcal{A}_{\text {icp }}$, the category of perfect integrally closed domains;
- $\mathcal{A}_{\text {per }}$, the category of perfect domains;


## Some subcategories of domains

- $\mathcal{A}_{\text {dom }}$, the category of domains;
- $\mathcal{A}_{\text {fld }}$, the category of fields;
- $\mathcal{A}_{\text {pfld }}$, the category of perfect fields;
- $\mathcal{A}_{\text {ic }}$, the category of integrally closed domains;
- $\mathcal{A}_{\text {bez }}$, the category of Bézout domains;
- $\mathscr{A}_{\text {ica }}$, the category of absolutely integrally closed domains;
- $\mathcal{A}_{\text {icp }}$, the category of perfect integrally closed domains;
- $A_{\text {per }}$, the category of perfect domains;
- $\mathcal{A}_{\text {qrat }}$, the category of quasi-rational domains;


## Some subcategories of domains

- $\mathcal{A}_{\text {dom }}$, the category of domains;
- $\mathcal{A}_{\text {fld }}$, the category of fields;
- $\mathcal{A}_{\text {pfld }}$, the category of perfect fields;
- $\mathcal{A}_{\text {ic }}$, the category of integrally closed domains;
- $\mathcal{A}_{\text {bez }}$, the category of Bézout domains;
- $\mathscr{A}_{\text {ica }}$, the category of absolutely integrally closed domains;
- $\mathcal{A}_{\text {icp }}$, the category of perfect integrally closed domains;
- $\mathcal{A}_{\text {per }}$, the category of perfect domains;
- $\mathcal{A}_{\text {qrat }}$, the category of quasi-rational domains;
- $\mathcal{A}_{\text {noe }}$, the category of Noetherian domains;


## Some subcategories of domains

- $\mathcal{A}_{\text {dom }}$, the category of domains;
- $\mathcal{A}_{\text {fld }}$, the category of fields;
- $\mathcal{A}_{\text {pfld }}$, the category of perfect fields;
- $\mathcal{A}_{\text {ic }}$, the category of integrally closed domains;
- $\mathcal{A}_{\text {bez }}$, the category of Bézout domains;
- $\mathcal{A}_{\text {ica }}$, the category of absolutely integrally closed domains;
- $\mathcal{A}_{\text {icp }}$, the category of perfect integrally closed domains;
- $\mathcal{A}_{\text {per }}$, the category of perfect domains;
- $\mathcal{A}_{\text {qrat }}$, the category of quasi-rational domains;
- $\mathcal{A}_{\text {noe }}$, the category of Noetherian domains; - $\mathscr{A}_{\text {ufd }}$, the category of unique factorization domains.


## Some subcategories of domains

- $\mathcal{A}_{\text {dom }}$, the category of domains;
- $\mathcal{A}_{\text {fld }}$, the category of fields;
- $\mathcal{A}_{\text {pfld }}$, the category of perfect fields;
- $\mathcal{A}_{\text {ic }}$, the category of integrally closed domains;
- $\mathcal{A}_{\text {bez }}$, the category of Bézout domains;
- $\mathcal{A}_{\text {ica }}$, the category of absolutely integrally closed domains;
- $\mathcal{A}_{\text {icp }}$, the category of perfect integrally closed domains;
- $\mathcal{A}_{\text {per }}$, the category of perfect domains;
- $\mathcal{A}_{\text {qrat }}$, the category of quasi-rational domains;
- $\mathcal{A}_{\text {noe }}$, the category of Noetherian domains;


## Some subcategories of domains

- $\mathcal{A}_{\text {dom }}$, the category of domains;
- $\mathcal{A}_{\text {fld }}$, the category of fields;
- $\mathcal{A}_{\text {pfld }}$, the category of perfect fields;
- $\mathcal{A}_{\text {ic }}$, the category of integrally closed domains;
- $\mathcal{A}_{\text {bez }}$, the category of Bézout domains;
- $\mathcal{A}_{\text {ica }}$, the category of absolutely integrally closed domains;
- $\mathcal{A}_{\text {icp }}$, the category of perfect integrally closed domains;
- $\mathcal{A}_{\text {per }}$, the category of perfect domains;
- $\mathcal{A}_{\text {qrat }}$, the category of quasi-rational domains;
- $\mathcal{A}_{\text {noe }}$, the category of Noetherian domains;
- $\mathcal{A}_{\text {ufd }}$, the category of unique factorization domains.


## Relations among the subcategories



## Relations among their limit closures.


$\mathcal{K}_{\text {fld }} \cap \mathcal{K}_{\text {per }}=\mathcal{K}_{\text {pfld }}=\mathcal{K}_{\text {fld }} \cap \mathcal{K}_{\text {icp }}$

## Basic assumptions

- $\mathcal{A}$ is a category of domains (such as one of the above). - $\mathcal{K}$ is the limit closure of $\mathcal{A}$ in commutative rings. - Every domain can embedded into a field that belongs to $\mathcal{A}$.


## Basic assumptions

- $\mathcal{A}$ is a category of domains (such as one of the above).
- $\mathcal{K}$ is the limit closure of $\mathcal{A}$ in commutative rings.


## Basic assumptions

- $\mathcal{A}$ is a category of domains (such as one of the above).
- $\mathcal{K}$ is the limit closure of $\mathcal{A}$ in commutative rings.
- Every domain can embedded into a field that belongs to $\mathcal{A}$.


## Construction of $K$ and $G$

$K: S P R \longrightarrow \mathcal{K}$ is the adjoint to the inclusion of $\mathcal{K}$ into the category of semiprime rings, easily shown to exist.

## Construction of $K$ and $G$

$K: S P R \longrightarrow \mathcal{K}$ is the adjoint to the inclusion of $\mathcal{K}$ into the category of semiprime rings, easily shown to exist. $G$ is more interesting. Let $\mathcal{B} \subseteq \mathcal{K}$ consist of all domains in $\mathcal{K}$. In most cases it is larger than $\mathcal{A}$.
Example: Define $D$ as the pullback $\mathbb{Z}[x] \times X_{2}[x] \mathbf{Z}_{2}\left[x^{2}\right]$. Then
$D \in \mathcal{B}_{\text {ic }}$ but is not integrally closed since $x \notin D$ satisfies the
$\square$

## Construction of $K$ and $G$

$K: S P R \longrightarrow \mathcal{K}$ is the adjoint to the inclusion of $\mathcal{K}$ into the category of semiprime rings, easily shown to exist. $G$ is more interesting. Let $\mathcal{B} \subseteq \mathcal{K}$ consist of all domains in $\mathcal{K}$. In most cases it is larger than $\mathcal{A}$.
Example: Define $D$ as the pullback $\mathbf{Z}[x] \times{ }_{\mathbf{Z}_{2}[x]} \mathbf{Z}_{2}\left[x^{2}\right]$. Then $D \in \mathcal{B}_{\text {ic }}$ but is not integrally closed since $x \notin D$ satisfies the integral equation $t^{2}-x^{2}$ with coefficients in $D$.

## Construction of $K$ and $G$

$K: S P R \longrightarrow \mathcal{K}$ is the adjoint to the inclusion of $\mathcal{K}$ into the category of semiprime rings, easily shown to exist.
$G$ is more interesting. Let $\mathcal{B} \subseteq \mathcal{K}$ consist of all domains in $\mathcal{K}$. In most cases it is larger than $\mathcal{A}$.
Example: Define $D$ as the pullback $\mathbf{Z}[x] \times{ }_{\mathbf{Z}_{2}[x]} \mathbf{Z}_{2}\left[x^{2}\right]$. Then $D \in \mathcal{B}_{\text {ic }}$ but is not integrally closed since $x \notin D$ satisfies the integral equation $t^{2}-x^{2}$ with coefficients in $D$.
For a domain $D$ we let $G(D)$ denote the intersection of all objects of $\mathcal{B}$ that contain $D$. There is at least one since there is a field in $\mathcal{A}$ that contains $D$.

## Construction of $K$ and $G$

$K: S P R \longrightarrow \mathcal{K}$ is the adjoint to the inclusion of $\mathcal{K}$ into the category of semiprime rings, easily shown to exist.
$G$ is more interesting. Let $\mathcal{B} \subseteq \mathcal{K}$ consist of all domains in $\mathcal{K}$. In most cases it is larger than $\mathcal{A}$.
Example: Define $D$ as the pullback $\mathbf{Z}[x] \times{ }_{\mathbf{Z}_{2}[x]} \mathbf{Z}_{2}\left[x^{2}\right]$. Then $D \in \mathcal{B}_{\text {ic }}$ but is not integrally closed since $x \notin D$ satisfies the integral equation $t^{2}-x^{2}$ with coefficients in $D$.
For a domain $D$ we let $G(D)$ denote the intersection of all objects of $\mathcal{B}$ that contain $D$. There is at least one since there is a field in $\mathcal{A}$ that contains $D$.

- Suppose $D \subseteq F \in \mathscr{A}$ with $F$ a field. Then $G(D)$ is the intersection of all $\mathcal{B}$-subobjects of $F$ that contain $D$.


## Some properties of $G$ and $K$

- $G(D)$ is a subring of the perfect closure of the field of fractions of $D$.


## Some properties of $G$ and $K$

- $G(D)$ is a subring of the perfect closure of the field of fractions of $D$.
- The inner adjunction $R \longrightarrow K(R)$ is an injection.


## Some properties of $G$ and $K$

- $G(D)$ is a subring of the perfect closure of the field of fractions of $D$.
- The inner adjunction $R \longrightarrow K(R)$ is an injection.
- The inner adjunction $R \longrightarrow K(R)$ is epic in semiprime rings.


## Some properties of $G$ and $K$

- $G(D)$ is a subring of the perfect closure of the field of fractions of $D$.
- The inner adjunction $R \longrightarrow K(R)$ is an injection.
- The inner adjunction $R \longrightarrow K(R)$ is epic in semiprime rings.
- The induced $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is a bijection.

Theorem, FAE (all D, R,P):

1. $G(D)=K(D)$.

## Theorem, FAE (all D, R,P):

1. $G(D)=K(D)$.
2. $P \subseteq D$, there is a $\operatorname{map} G(D) \longrightarrow G(D / P)$.

## Theorem, FAE (all D, R,P):

1. $G(D)=K(D)$.
2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D / P)$.
3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.

## Theorem, FAE (all D,R,P):

1. $G(D)=K(D)$.
2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D / P)$.
3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
4. $G$ is a functor on domains.

## Theorem, FAE (all D,R,P):

1. $G(D)=K(D)$.
2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D / P)$.
3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
4. $G$ is a functor on domains.
5. $K(D)$ is a domain.

## Theorem, FAE (all D,R,P):

1. $G(D)=K(D)$.
2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D / P)$.
3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
4. $G$ is a functor on domains.
5. $K(D)$ is a domain.
6. $\operatorname{ker}(K(R) \longrightarrow K(R / P))$ is prime.

## Theorem, FAE (all D, R,P):

1. $G(D)=K(D)$.
2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D / P)$.
3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
4. $G$ is a functor on domains.
5. $K(D)$ is a domain.
6. $\operatorname{ker}(K(R) \longrightarrow K(R / P))$ is prime.
7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.

## Theorem, FAE (all D, R,P):

1. $G(D)=K(D)$.
2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D / P)$.
3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
4. $G$ is a functor on domains.
5. $K(D)$ is a domain.
6. $\operatorname{ker}(K(R) \longrightarrow K(R / P))$ is prime.
7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
8. $R \longrightarrow K(R)$ is essential.

## Theorem, FAE (all D, R,P):

1. $G(D)=K(D)$.
2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D / P)$.
3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
4. $G$ is a functor on domains.
5. $K(D)$ is a domain.
6. $\operatorname{ker}(K(R) \longrightarrow K(R / P))$ is prime.
7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
8. $R \longrightarrow K(R)$ is essential.
9. $R \subseteq S \subseteq K(R)$ implies $K(S)=K(R)$.

## Theorem, FAE (all D, R,P):

1. $G(D)=K(D)$.
2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D / P)$.
3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
4. $G$ is a functor on domains.
5. $K(D)$ is a domain.
6. $\operatorname{ker}(K(R) \longrightarrow K(R / P))$ is prime.
7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
8. $R \longrightarrow K(R)$ is essential.
9. $R \subseteq S \subseteq K(R)$ implies $K(S)=K(R)$.
10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.

## Theorem, FAE (all D, R,P):

1. $G(D)=K(D)$.
2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D / P)$.
3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
4. $G$ is a functor on domains.
5. $K(D)$ is a domain.
6. $\operatorname{ker}(K(R) \longrightarrow K(R / P))$ is prime.
7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
8. $R \longrightarrow K(R)$ is essential.
9. $R \subseteq S \subseteq K(R)$ implies $K(S)=K(R)$.
10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
11. $R \hookrightarrow K(R)$ is integral.

## Theorem, FAE (all D, R,P):

1. $G(D)=K(D)$.
2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D / P)$.
3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
4. $G$ is a functor on domains.
5. $K(D)$ is a domain.
6. $\operatorname{ker}(K(R) \longrightarrow K(R / P))$ is prime.
7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
8. $R \longrightarrow K(R)$ is essential.
9. $R \subseteq S \subseteq K(R)$ implies $K(S)=K(R)$.
10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
11. $R \hookrightarrow K(R)$ is integral.
12. $D \hookrightarrow G(D)$ is integral.

## Theorem, FAE (all D, R,P):

1. $G(D)=K(D)$.
2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D / P)$.
3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
4. $G$ is a functor on domains.
5. $K(D)$ is a domain.
6. $\operatorname{ker}(K(R) \longrightarrow K(R / P))$ is prime.
7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
8. $R \longrightarrow K(R)$ is essential.
9. $R \subseteq S \subseteq K(R)$ implies $K(S)=K(R)$.
10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
11. $R \hookrightarrow K(R)$ is integral.
12. $D \hookrightarrow G(D)$ is integral.
13. $\mathcal{A}_{\text {ica }} \subseteq \mathcal{K}$.

## Theorem, FAE (all D, R,P):

1. $G(D)=K(D)$.
2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D / P)$.
3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
4. $G$ is a functor on domains.
5. $K(D)$ is a domain.
6. $\operatorname{ker}(K(R) \longrightarrow K(R / P))$ is prime.
7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
8. $R \longrightarrow K(R)$ is essential.
9. $R \subseteq S \subseteq K(R)$ implies $K(S)=K(R)$.
10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
11. $R \hookrightarrow K(R)$ is integral.
12. $D \hookrightarrow G(D)$ is integral.
13. $\mathcal{A}_{\text {ica }} \subseteq \mathcal{K}$.
14. $\mathcal{A}_{\text {icp }} \subseteq \mathcal{K}$.

## Diagram of logical inferences



## Sample results

- A semiprime ring satisfies the $(2,3)$-condition if whenever $r^{3}=s^{2}$, there is a $t$ (provably unique) such that $t^{2}=r$ and $t^{3}=s$. To prove uniqueness, compute $(t-u)^{3}$.



## Sample results

- A semiprime ring satisfies the ( 2,3 )-condition if whenever $r^{3}=s^{2}$, there is a $t$ (provably unique) such that $t^{2}=r$ and $t^{3}=s$. To prove uniqueness, compute $(t-u)^{3}$.
- It is interesting, although not important, to note that the ( 2,3 )-condition is equivalent to the ( $k, n$ )-condition whenever $k>1$ and $n>1$ are relatively prime integers.


## Sample results

- A semiprime ring satisfies the $(2,3)$-condition if whenever $r^{3}=s^{2}$, there is a $t$ (provably unique) such that $t^{2}=r$ and $t^{3}=s$. To prove uniqueness, compute $(t-u)^{3}$.
- It is interesting, although not important, to note that the $(2,3)$-condition is equivalent to the ( $k, n$ )-condition whenever $k>1$ and $n>1$ are relatively prime integers.
- Every integrally closed domain $D$ satisfies that condition. The element $t=s / r$ of the field of fractions solves it and is integral over $D$.


## Sample results

- A semiprime ring satisfies the $(2,3)$-condition if whenever $r^{3}=s^{2}$, there is a $t$ (provably unique) such that $t^{2}=r$ and $t^{3}=s$. To prove uniqueness, compute $(t-u)^{3}$.
- It is interesting, although not important, to note that the $(2,3)$-condition is equivalent to the ( $k, n$ )-condition whenever $k>1$ and $n>1$ are relatively prime integers.
- Every integrally closed domain $D$ satisfies that condition. The element $t=s / r$ of the field of fractions solves it and is integral over $D$.
- Theorem: A semiprime ring is in $\mathcal{K}_{\mathrm{ic}}$ iff it is (2,3)-closed.


## Sample results, continued

- A semiprime ring satisfies the DL-condition if whenever $r^{3}=s^{2}$ and $r$ is a square mod every prime ideal, then there is a $t$ (provably unique) such that $t^{2}=r$ and $t^{3}=s$.


## Sample results, continued

- A semiprime ring satisfies the DL-condition if whenever $r^{3}=s^{2}$ and $r$ is a square mod every prime ideal, then there is a $t$ (provably unique) such that $t^{2}=r$ and $t^{3}=s$.
- Using the compactness of Spec in the domain topology, you can prove that the condition of being a square mod every prime is equivalent to the existence of a set $\left\{t_{1}, \ldots, t_{n}\right\}$ such that $\left(r-t_{1}^{2}\right) \cdots\left(r-t_{n}^{2}\right)=0$.


## Sample results, continued

- A semiprime ring satisfies the DL-condition if whenever $r^{3}=s^{2}$ and $r$ is a square mod every prime ideal, then there is a $t$ (provably unique) such that $t^{2}=r$ and $t^{3}=s$.
- Using the compactness of Spec in the domain topology, you can prove that the condition of being a square mod every prime is equivalent to the existence of a set $\left\{t_{1}, \ldots, t_{n}\right\}$ such that $\left(r-t_{1}^{2}\right) \cdots\left(r-t_{n}^{2}\right)=0$.
- Every domain trivially satisfies the DL-condition.


## Sample results, continued

- A semiprime ring satisfies the DL-condition if whenever $r^{3}=s^{2}$ and $r$ is a square mod every prime ideal, then there is a $t$ (provably unique) such that $t^{2}=r$ and $t^{3}=s$.
- Using the compactness of Spec in the domain topology, you can prove that the condition of being a square mod every prime is equivalent to the existence of a set $\left\{t_{1}, \ldots, t_{n}\right\}$ such that $\left(r-t_{1}^{2}\right) \cdots\left(r-t_{n}^{2}\right)=0$.
- Every domain trivially satisfies the DL-condition.
- Theorem: A semiprime ring is in $\mathcal{K}_{\text {dom }}$ iff it satisfies the DL-condition.


## These conditions are essentially algebraic

- Aside from the operations defining commutative rings, we let $\alpha$ be the unary partial operation whose domain consists of $\left\{r \mid r^{2}=0\right\}$, subject to the equations $\alpha(r)=r$ and $\alpha(r)=0$. The algebras for this theory is just the semiprime rings.


## These conditions are essentially algebraic

- Aside from the operations defining commutative rings, we let $\alpha$ be the unary partial operation whose domain consists of $\left\{r \mid r^{2}=0\right\}$, subject to the equations $\alpha(r)=r$ and $\alpha(r)=0$. The algebras for this theory is just the semiprime rings.
- Add a binary operator $\beta$ whose domain is $\left\{(r, s) \mid r^{3}=s^{2}\right\}$ and subject to the equations $\beta(r, s)^{2}=r$ and $\beta(r, s)^{3}=s$. The algebras for this theory are the $(2,3)$-closed rings.


## These are essentially algebraic, cont'd

- Aside from the operations and the partial operation defining the semiprime rings, we add, for each $n>0$, a partial $(n+2)$-ary operation $\beta_{n}$ whose domain is

$$
\left\{\left(r, s, t_{1}, \ldots, t_{n}\right) \mid r^{3}=s^{2} \text { and }\left(r-t_{1}^{2}\right) \cdots\left(r-t_{n}^{2}\right)=0\right\}
$$

subject to the equations that, for $t=\beta_{n}\left(r, s, t_{1}, \ldots, t_{n}\right)$, then $t^{2}=r$ and $t^{3}=s$.

## These are essentially algebraic, cont'd

- Aside from the operations and the partial operation defining the semiprime rings, we add, for each $n>0$, a partial $(n+2)$-ary operation $\beta_{n}$ whose domain is

$$
\left\{\left(r, s, t_{1}, \ldots, t_{n}\right) \mid r^{3}=s^{2} \text { and }\left(r-t_{1}^{2}\right) \cdots\left(r-t_{n}^{2}\right)=0\right\}
$$

subject to the equations that, for $t=\beta_{n}\left(r, s, t_{1}, \ldots, t_{n}\right)$, then $t^{2}=r$ and $t^{3}=s$.

- In all cases the values of the partial operations are unique, subject to the equations, and therefore the subcategory of models is full in the category of commutative rings.

