Completions of subcategories of domains

Michael Barr, John Kennison, Robert Raphael

McGill, Clark, Concordia

http://www.math.mcgill.ca/barr/papers

Abstract

We have been studying the limit completion, in the category of commutative rings, of various subcategories of integral domains. Since any limit of domains is a semiprime ring (only nilpotent is 0), we will concentrate on the limit closure in that subcategory. This will complement the talk Bob gave two weeks ago

- $\mathcal{A}_{\mathrm{dom}}$, the category of domains;
- $\mathcal{A}_{\mathrm{fld}}$, the category of fields;
- \mathcal{A}_{pfld} , the category of perfect fields;
- \mathcal{A}_{ic} , the category of integrally closed domains;
- $\mathcal{A}_{\mathrm{bez}}$, the category of Bézout domains;
- \mathcal{A}_{ica} , the category of absolutely integrally closed domains;
- $\mathcal{A}_{\rm icp}$, the category of perfect integrally closed domains;
- $\mathcal{A}_{\mathrm{per}}$, the category of perfect domains;
- $\mathcal{A}_{\mathrm{qrat}}$, the category of quasi-rational domains;
- $\mathcal{A}_{\mathrm{noe}}$, the category of Noetherian domains;
- $\mathcal{A}_{\rm ufd}$, the category of unique factorization domains.

- $\mathcal{A}_{\mathrm{dom}}$, the category of domains;
- $\mathcal{A}_{\mathrm{fld}}$, the category of fields;
- \mathcal{A}_{pfld} , the category of perfect fields;
- \mathcal{A}_{ic} , the category of integrally closed domains;
- $\mathcal{A}_{\mathrm{bez}}$, the category of Bézout domains;
- \mathcal{A}_{ica} , the category of absolutely integrally closed domains;
- $\mathcal{A}_{\rm icp}$, the category of perfect integrally closed domains;
- $\mathcal{A}_{\mathrm{per}}$, the category of perfect domains;
- $\mathcal{A}_{\mathrm{qrat}}$, the category of quasi-rational domains;
- \mathcal{A}_{noe} , the category of Noetherian domains;
- $\mathcal{A}_{\mathrm{ufd}}$, the category of unique factorization domains.

- \mathcal{A}_{dom} , the category of domains;
- $\mathcal{A}_{\mathrm{fld}}$, the category of fields;
- $\mathcal{A}_{\mathrm{pfld}}$, the category of perfect fields;
- \mathcal{A}_{ic} , the category of integrally closed domains;
- $\mathcal{A}_{\mathrm{bez}}$, the category of Bézout domains;
- \mathcal{A}_{ica} , the category of absolutely integrally closed domains;
- $\mathcal{A}_{\rm icp}$, the category of perfect integrally closed domains;
- $\mathcal{A}_{\mathrm{per}}$, the category of perfect domains;
- $\mathcal{A}_{\mathrm{qrat}}$, the category of quasi-rational domains;
- $\mathcal{A}_{\mathrm{noe}}$, the category of Noetherian domains;
- $\mathcal{A}_{\rm ufd}$, the category of unique factorization domains.

- \mathcal{A}_{dom} , the category of domains;
- $\mathcal{A}_{\mathrm{fld}}$, the category of fields;
- $\mathcal{A}_{\mathrm{pfld}}$, the category of perfect fields;
- \mathcal{A}_{ic} , the category of integrally closed domains;
- Abez, the category of Bézout domains;
- $\mathcal{A}_{
 m ica}$, the category of absolutely integrally closed domains;
- $\mathcal{A}_{\rm icp}$, the category of perfect integrally closed domains;
- $\mathcal{A}_{\mathrm{per}}$, the category of perfect domains;
- $\mathcal{A}_{\mathrm{qrat}}$, the category of quasi-rational domains;
- \mathcal{A}_{noe} , the category of Noetherian domains;
- $\mathcal{A}_{\mathrm{ufd}}$, the category of unique factorization domains.

- \mathcal{A}_{dom} , the category of domains;
- $\mathcal{A}_{\mathrm{fld}}$, the category of fields;
- $\mathcal{A}_{\mathrm{pfld}}$, the category of perfect fields;
- \mathcal{A}_{ic} , the category of integrally closed domains;
- $\mathcal{A}_{\mathrm{bez}}$, the category of Bézout domains;
- \mathcal{A}_{ica} , the category of absolutely integrally closed domains;
- \mathcal{A}_{icp} , the category of perfect integrally closed domains;
- $\mathcal{A}_{\mathrm{per}}$, the category of perfect domains;
- $\mathcal{A}_{\mathrm{qrat}}$, the category of quasi-rational domains;
- $\mathcal{A}_{\mathrm{noe}}$, the category of Noetherian domains;
- $\mathcal{A}_{\mathrm{ufd}}$, the category of unique factorization domains.

- \mathcal{A}_{dom} , the category of domains;
- $\mathcal{A}_{\mathrm{fld}}$, the category of fields;
- $\mathcal{A}_{\mathrm{pfld}}$, the category of perfect fields;
- \mathcal{A}_{ic} , the category of integrally closed domains;
- $\mathcal{A}_{\mathrm{bez}}$, the category of Bézout domains;
- \mathcal{A}_{ica} , the category of absolutely integrally closed domains;
- \mathcal{A}_{icp} , the category of perfect integrally closed domains;
- $\mathcal{A}_{\mathrm{per}}$, the category of perfect domains;
- $\mathcal{A}_{\mathrm{qrat}}$, the category of quasi-rational domains;
- \mathcal{A}_{noe} , the category of Noetherian domains;
- $\mathcal{A}_{\mathrm{ufd}}$, the category of unique factorization domains.

- \mathcal{A}_{dom} , the category of domains;
- $\mathcal{A}_{\mathrm{fld}}$, the category of fields;
- $\mathcal{A}_{\mathrm{pfld}}$, the category of perfect fields;
- \mathcal{A}_{ic} , the category of integrally closed domains;
- $\mathcal{A}_{ ext{bez}}$, the category of Bézout domains;
- \mathcal{A}_{ica} , the category of absolutely integrally closed domains;
- \mathcal{A}_{icp} , the category of perfect integrally closed domains;
- $\mathcal{A}_{\mathrm{per}}$, the category of perfect domains;
- $\mathcal{A}_{\mathrm{qrat}}$, the category of quasi-rational domains;
- \mathcal{A}_{noe} , the category of Noetherian domains;
- $\mathcal{A}_{\mathrm{ufd}}$, the category of unique factorization domains.

- \mathcal{A}_{dom} , the category of domains;
- $\mathcal{A}_{\mathrm{fld}}$, the category of fields;
- $\mathcal{A}_{\mathrm{pfld}}$, the category of perfect fields;
- \mathcal{A}_{ic} , the category of integrally closed domains;
- $\mathcal{A}_{ ext{bez}}$, the category of Bézout domains;
- \mathcal{A}_{ica} , the category of absolutely integrally closed domains;
- $\mathcal{A}_{\rm icp},$ the category of perfect integrally closed domains;
- $\mathcal{A}_{\mathrm{per}}$, the category of perfect domains;
- $\mathcal{A}_{\mathrm{qrat}}$, the category of quasi-rational domains;
- \mathcal{A}_{noe} , the category of Noetherian domains;
- $\mathcal{A}_{\mathrm{ufd}}$, the category of unique factorization domains.

- \mathcal{A}_{dom} , the category of domains;
- $\mathcal{A}_{\mathrm{fld}}$, the category of fields;
- $\mathcal{A}_{\mathrm{pfld}}$, the category of perfect fields;
- \mathcal{A}_{ic} , the category of integrally closed domains;
- $\mathcal{A}_{ ext{bez}}$, the category of Bézout domains;
- \mathcal{A}_{ica} , the category of absolutely integrally closed domains;
- $\mathcal{A}_{\rm icp},$ the category of perfect integrally closed domains;
- $\mathcal{A}_{\mathrm{per}}$, the category of perfect domains;
- \mathcal{A}_{qrat} , the category of quasi-rational domains;
- \mathcal{A}_{noe} , the category of Noetherian domains;
- $\mathcal{A}_{\mathrm{ufd}}$, the category of unique factorization domains.

- \mathcal{A}_{dom} , the category of domains;
- $\mathcal{A}_{\mathrm{fld}}$, the category of fields;
- $\mathcal{A}_{\mathrm{pfld}}$, the category of perfect fields;
- \mathcal{A}_{ic} , the category of integrally closed domains;
- $\mathcal{A}_{ ext{bez}}$, the category of Bézout domains;
- \mathcal{A}_{ica} , the category of absolutely integrally closed domains;
- $\mathcal{A}_{\rm icp},$ the category of perfect integrally closed domains;
- $\mathcal{A}_{\mathrm{per}}$, the category of perfect domains;
- $\mathcal{A}_{\mathrm{qrat}}$, the category of quasi-rational domains;
- \mathcal{A}_{noe} , the category of Noetherian domains;
- $\mathcal{A}_{\mathrm{ufd}}$, the category of unique factorization domains.

- \mathcal{A}_{dom} , the category of domains;
- $\mathcal{A}_{\mathrm{fld}}$, the category of fields;
- $\mathcal{A}_{\mathrm{pfld}}$, the category of perfect fields;
- \mathcal{A}_{ic} , the category of integrally closed domains;
- $\mathcal{A}_{ ext{bez}}$, the category of Bézout domains;
- \mathcal{A}_{ica} , the category of absolutely integrally closed domains;
- $\mathcal{A}_{\rm icp},$ the category of perfect integrally closed domains;
- $\mathcal{A}_{\mathrm{per}}$, the category of perfect domains;
- $\mathcal{A}_{\mathrm{qrat}}$, the category of quasi-rational domains;
- \mathcal{A}_{noe} , the category of Noetherian domains;
- \mathcal{A}_{ufd} , the category of unique factorization domains.

Relations among the subcategories

Relations among their limit closures.

Basic assumptions

- \mathcal{A} is a category of domains (such as one of the above).
- ${\mathcal K}$ is the limit closure of ${\mathcal A}$ in commutative rings
- Every domain can embedded into a field that belongs to A.

Basic assumptions

- \mathcal{A} is a category of domains (such as one of the above).
- \mathcal{K} is the limit closure of \mathcal{A} in commutative rings.
- Every domain can embedded into a field that belongs to A.

Basic assumptions

- \mathcal{A} is a category of domains (such as one of the above).
- \mathcal{K} is the limit closure of \mathcal{A} in commutative rings.
- Every domain can embedded into a field that belongs to \mathcal{A} .

$K : SPR \longrightarrow K$ is the adjoint to the inclusion of K into the category of semiprime rings, easily shown to exist.

G is more interesting. Let $\mathcal{B} \subseteq \mathcal{K}$ consist of all domains in \mathcal{K} . In most cases it is larger than \mathcal{A} .

Example: Define D as the pullback $\mathbf{Z}[x] \times_{\mathbf{Z}_2[x]} \mathbf{Z}_2[x^2]$. Then $D \in \mathcal{B}_{ic}$ but is not integrally closed since $x \notin D$ satisfies the integral equation $t^2 - x^2$ with coefficients in D.

For a domain D we let G(D) denote the intersection of all objects of \mathcal{B} that contain D. There is at least one since there is a field in \mathcal{A} that contains D.

 $\mathcal{K} : SP\mathcal{R} \longrightarrow \mathcal{K}$ is the adjoint to the inclusion of \mathcal{K} into the category of semiprime rings, easily shown to exist. *G* is more interesting. Let $\mathcal{B} \subseteq \mathcal{K}$ consist of all domains in \mathcal{K} . In

G is more interesting. Let $\mathcal{B} \subseteq \mathcal{K}$ consist of all domains in \mathcal{K} . In most cases it is larger than \mathcal{A} .

Example: Define D as the pullback $\mathbf{Z}[x] \times_{\mathbf{Z}_2[x]} \mathbf{Z}_2[x^2]$. Then $D \in \mathcal{B}_{ic}$ but is not integrally closed since $x \notin D$ satisfies the integral equation $t^2 - x^2$ with coefficients in D. For a domain D we let G(D) denote the intersection of all objects of \mathcal{B} that contain D. There is at least one since there is a field in \mathcal{A} that contains D.

 $K : SPR \longrightarrow K$ is the adjoint to the inclusion of K into the category of semiprime rings, easily shown to exist.

G is more interesting. Let $\mathcal{B} \subseteq \mathcal{K}$ consist of all domains in \mathcal{K} . In most cases it is larger than \mathcal{A} .

Example: Define *D* as the pullback $Z[x] \times_{Z_2[x]} Z_2[x^2]$. Then $D \in \mathcal{B}_{ic}$ but is not integrally closed since $x \notin D$ satisfies the integral equation $t^2 - x^2$ with coefficients in *D*.

For a domain D we let G(D) denote the intersection of all objects of \mathcal{B} that contain D. There is at least one since there is a field in \mathcal{A} that contains D.

 $K : SPR \longrightarrow K$ is the adjoint to the inclusion of K into the category of semiprime rings, easily shown to exist.

G is more interesting. Let $\mathcal{B} \subseteq \mathcal{K}$ consist of all domains in \mathcal{K} . In most cases it is larger than \mathcal{A} .

Example: Define *D* as the pullback $Z[x] \times_{Z_2[x]} Z_2[x^2]$. Then $D \in \mathcal{B}_{ic}$ but is not integrally closed since $x \notin D$ satisfies the integral equation $t^2 - x^2$ with coefficients in *D*.

For a domain D we let G(D) denote the intersection of all objects of \mathcal{B} that contain D. There is at least one since there is a field in \mathcal{A} that contains D.

 $K : SPR \longrightarrow K$ is the adjoint to the inclusion of K into the category of semiprime rings, easily shown to exist.

G is more interesting. Let $\mathcal{B} \subseteq \mathcal{K}$ consist of all domains in \mathcal{K} . In most cases it is larger than \mathcal{A} .

Example: Define D as the pullback $\mathbf{Z}[x] \times_{\mathbf{Z}_2[x]} \mathbf{Z}_2[x^2]$. Then $D \in \mathcal{B}_{ic}$ but is not integrally closed since $x \notin D$ satisfies the integral equation $t^2 - x^2$ with coefficients in D.

For a domain D we let G(D) denote the intersection of all objects of \mathcal{B} that contain D. There is at least one since there is a field in \mathcal{A} that contains D.

- *G*(*D*) is a subring of the perfect closure of the field of fractions of *D*.
- The inner adjunction $R \longrightarrow K(R)$ is an injection.
- The inner adjunction $R \longrightarrow K(R)$ is epic in semiprime rings.
- The induced $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is a bijection.

- *G*(*D*) is a subring of the perfect closure of the field of fractions of *D*.
- The inner adjunction $R \longrightarrow K(R)$ is an injection.
- The inner adjunction $R \longrightarrow K(R)$ is epic in semiprime rings.
- The induced $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is a bijection.

- *G*(*D*) is a subring of the perfect closure of the field of fractions of *D*.
- The inner adjunction $R \longrightarrow K(R)$ is an injection.
- The inner adjunction $R \longrightarrow K(R)$ is epic in semiprime rings.
- The induced $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is a bijection.

- *G*(*D*) is a subring of the perfect closure of the field of fractions of *D*.
- The inner adjunction $R \longrightarrow K(R)$ is an injection.
- The inner adjunction $R \longrightarrow K(R)$ is epic in semiprime rings.
- The induced $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is a bijection.

1. G(D) = K(D).

- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. $\ker(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral.
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ ext{ica}} \subseteq \mathcal{K}$
- 14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

- 1. G(D) = K(D).
- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. $\ker(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral.
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ica} \subseteq \mathcal{K}$
- 14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

- 1. G(D) = K(D).
- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. $\ker(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral.
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ ext{ica}} \subseteq \mathcal{K}$
- 14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

- 1. G(D) = K(D).
- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. $\ker(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral.
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ ext{ica}} \subseteq \mathcal{K}$
- 14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

- 1. G(D) = K(D).
- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. $\ker(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral.
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ ext{ica}} \subseteq \mathcal{K}$
- 14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

- 1. G(D) = K(D).
- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. ker $(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ ext{ica}} \subseteq \mathcal{K}$
- 14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

- 1. G(D) = K(D).
- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. ker $(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ ext{ica}} \subseteq \mathcal{K}$
- 14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

- 1. G(D) = K(D).
- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. ker $(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ica} \subseteq \mathcal{K}$
- 14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

- 1. G(D) = K(D).
- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. ker $(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral.
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ ext{ica}} \subseteq \mathcal{K}$
- 14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

- 1. G(D) = K(D).
- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. ker $(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ica} \subseteq \mathcal{K}$
- 14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

- 1. G(D) = K(D).
- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. ker $(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral.
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ica} \subseteq \mathcal{K}_{ica}$
- 14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

- 1. G(D) = K(D).
- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. ker $(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral.
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ ext{ica}} \subseteq \mathcal{K}$
- 14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

- 1. G(D) = K(D).
- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. ker $(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral.
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ica} \subseteq \mathcal{K}$.

14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

- 1. G(D) = K(D).
- 2. $P \subseteq D$, there is a map $G(D) \longrightarrow G(D/P)$.
- 3. The map $\operatorname{Spec}(G(D)) \longrightarrow \operatorname{Spec}(D)$ is surjective.
- 4. G is a functor on domains.
- 5. K(D) is a domain.
- 6. ker $(K(R) \longrightarrow K(R/P))$ is prime.
- 7. $\operatorname{Spec}(K(R)) \longrightarrow \operatorname{Spec}(R)$ is an order isomorphism.
- 8. $R \longrightarrow K(R)$ is essential.
- 9. $R \subseteq S \subseteq K(R)$ implies K(S) = K(R).
- 10. $R \subseteq S \subseteq K(R)$ implies $R \hookrightarrow S$ is epic.
- 11. $R \hookrightarrow K(R)$ is integral.
- 12. $D \hookrightarrow G(D)$ is integral.
- 13. $\mathcal{A}_{ica} \subseteq \mathcal{K}$.
- 14. $\mathcal{A}_{icp} \subseteq \mathcal{K}$.

Diagram of logical inferences

4. *G* functor
$$\longrightarrow$$
 1. *G* = *K* \longrightarrow 5. dom inv
 \uparrow \downarrow \downarrow \downarrow
3. Spec surj on *G* \Leftarrow 2. *G*(*D*) to *G*(*D*/*P*) 6. kernel prime
 \uparrow \downarrow
12. *G*(*D*) integral \Leftarrow 11. *K*(*R*) integral 7. Spec order iso
 \uparrow \uparrow \downarrow \downarrow
13. $\mathcal{A}_{ica} \subseteq \mathcal{K}$ 9. *K* on intermed \Leftarrow 8. *K*(*R*) essential
 \uparrow \uparrow 10. epic on intermed

- A semiprime ring satisfies the (2,3)-condition if whenever $r^3 = s^2$, there is a *t* (provably unique) such that $t^2 = r$ and $t^3 = s$. To prove uniqueness, compute $(t u)^3$.
- It is interesting, although not important, to note that the (2,3)-condition is equivalent to the (k,n)-condition whenever k > 1 and n > 1 are relatively prime integers.
- Every integrally closed domain D satisfies that condition. The element t = s/r of the field of fractions solves it and is integral over D.
- Theorem: A semiprime ring is in \mathcal{K}_{ic} iff it is (2,3)-closed.

- A semiprime ring satisfies the (2,3)-condition if whenever $r^3 = s^2$, there is a *t* (provably unique) such that $t^2 = r$ and $t^3 = s$. To prove uniqueness, compute $(t u)^3$.
- It is interesting, although not important, to note that the (2,3)-condition is equivalent to the (k,n)-condition whenever k > 1 and n > 1 are relatively prime integers.
- Every integrally closed domain D satisfies that condition. The element t = s/r of the field of fractions solves it and is integral over D.
- Theorem: A semiprime ring is in \mathcal{K}_{ic} iff it is (2,3)-closed.

- A semiprime ring satisfies the (2,3)-condition if whenever $r^3 = s^2$, there is a *t* (provably unique) such that $t^2 = r$ and $t^3 = s$. To prove uniqueness, compute $(t u)^3$.
- It is interesting, although not important, to note that the (2,3)-condition is equivalent to the (k,n)-condition whenever k > 1 and n > 1 are relatively prime integers.
- Every integrally closed domain D satisfies that condition. The element t = s/r of the field of fractions solves it and is integral over D.
- Theorem: A semiprime ring is in \mathcal{K}_{ic} iff it is (2,3)-closed.

- A semiprime ring satisfies the (2,3)-condition if whenever $r^3 = s^2$, there is a *t* (provably unique) such that $t^2 = r$ and $t^3 = s$. To prove uniqueness, compute $(t u)^3$.
- It is interesting, although not important, to note that the (2,3)-condition is equivalent to the (k,n)-condition whenever k > 1 and n > 1 are relatively prime integers.
- Every integrally closed domain D satisfies that condition. The element t = s/r of the field of fractions solves it and is integral over D.
- Theorem: A semiprime ring is in \mathcal{K}_{ic} iff it is (2,3)-closed.

- A semiprime ring satisfies the DL-condition if whenever $r^3 = s^2$ and r is a square mod every prime ideal, then there is a t (provably unique) such that $t^2 = r$ and $t^3 = s$.
- Using the compactness of Spec in the domain topology, you can prove that the condition of being a square mod every prime is equivalent to the existence of a set $\{t_1, \ldots, t_n\}$ such that $(r t_1^2) \cdots (r t_n^2) = 0$.
- Every domain trivially satisfies the DL-condition.
- Theorem: A semiprime ring is in *K*_{dom} iff it satisfies the *DL-condition*.

- A semiprime ring satisfies the DL-condition if whenever $r^3 = s^2$ and r is a square mod every prime ideal, then there is a t (provably unique) such that $t^2 = r$ and $t^3 = s$.
- Using the compactness of Spec in the domain topology, you can prove that the condition of being a square mod every prime is equivalent to the existence of a set $\{t_1, \ldots, t_n\}$ such that $(r t_1^2) \cdots (r t_n^2) = 0$.
- Every domain trivially satisfies the DL-condition.
- Theorem: A semiprime ring is in \mathcal{K}_{dom} iff it satisfies the *DL-condition*.

- A semiprime ring satisfies the DL-condition if whenever $r^3 = s^2$ and r is a square mod every prime ideal, then there is a t (provably unique) such that $t^2 = r$ and $t^3 = s$.
- Using the compactness of Spec in the domain topology, you can prove that the condition of being a square mod every prime is equivalent to the existence of a set $\{t_1, \ldots, t_n\}$ such that $(r t_1^2) \cdots (r t_n^2) = 0$.
- Every domain trivially satisfies the DL-condition.
- Theorem: A semiprime ring is in \mathcal{K}_{dom} iff it satisfies the DL-condition.

- A semiprime ring satisfies the DL-condition if whenever $r^3 = s^2$ and r is a square mod every prime ideal, then there is a t (provably unique) such that $t^2 = r$ and $t^3 = s$.
- Using the compactness of Spec in the domain topology, you can prove that the condition of being a square mod every prime is equivalent to the existence of a set $\{t_1, \ldots, t_n\}$ such that $(r t_1^2) \cdots (r t_n^2) = 0$.
- Every domain trivially satisfies the DL-condition.
- Theorem: A semiprime ring is in \mathcal{K}_{dom} iff it satisfies the *DL*-condition.

These conditions are essentially algebraic

- Aside from the operations defining commutative rings, we let α be the unary partial operation whose domain consists of {r | r² = 0}, subject to the equations α(r) = r and α(r) = 0. The algebras for this theory is just the semiprime rings.
- Add a binary operator β whose domain is {(r, s) | r³ = s²} and subject to the equations β(r, s)² = r and β(r, s)³ = s. The algebras for this theory are the (2,3)-closed rings.

These conditions are essentially algebraic

- Aside from the operations defining commutative rings, we let α be the unary partial operation whose domain consists of {r | r² = 0}, subject to the equations α(r) = r and α(r) = 0. The algebras for this theory is just the semiprime rings.
- Add a binary operator β whose domain is {(r, s) | r³ = s²} and subject to the equations β(r, s)² = r and β(r, s)³ = s. The algebras for this theory are the (2,3)-closed rings.

These are essentially algebraic, cont'd

 Aside from the operations and the partial operation defining the semiprime rings, we add, for each n > 0, a partial (n+2)-ary operation β_n whose domain is

$$\{(r, s, t_1, \dots, t_n) \mid r^3 = s^2 \text{ and } (r - t_1^2) \cdots (r - t_n^2) = 0\}$$

subject to the equations that, for $t = \beta_n(r, s, t_1, ..., t_n)$, then $t^2 = r$ and $t^3 = s$.

• In all cases the values of the partial operations are unique, subject to the equations, and therefore the subcategory of models is full in the category of commutative rings.

These are essentially algebraic, cont'd

 Aside from the operations and the partial operation defining the semiprime rings, we add, for each n > 0, a partial (n+2)-ary operation β_n whose domain is

$$\{(r, s, t_1, \dots, t_n) \mid r^3 = s^2 \text{ and } (r - t_1^2) \cdots (r - t_n^2) = 0\}$$

subject to the equations that, for $t = \beta_n(r, s, t_1, ..., t_n)$, then $t^2 = r$ and $t^3 = s$.

• In all cases the values of the partial operations are unique, subject to the equations, and therefore the subcategory of models is full in the category of commutative rings.