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The snake lemma states that given any commutative diagram
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in an abelian category in which both rows are exact, there is canonical map
kerw // cokeru so that the sequence

0 // keru // ker v // kerw // cokeru // coker v // cokerw // 0

is exact.
But it is also true that when f : A′ // A and g : A // A′′ are arrows in an abelian

category, then there is an exact sequence

0 // ker f // ker gf // ker g // coker f // coker gf // coker g // 0

This looks an awful lot like the conclusion to the snake lemma applied to the diagram
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except of course that rows are never exact (with some trivial exceptions). So it is natural
to ask the question of what is required of a commutative diagram of the form (*) to force
the conclusion of the snake lemma. We do not give a complete necessary and sufficient
condition, but we do find a sufficient condition that includes both the cases (∗) and (∗∗).
We do not know if the condition we find is necessary; my best guess is that it is not.
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