
BECK MODULES FOR MONOIDS

MICHAEL BARR

1. Introduction

The notion of Beck module was introduced in [Beck, 1967]. If X is an object of the
category X , Beck defined an X-module to be an abelian group object in the slice category
X /X. He then showed what this amounted to in several categories:

1. When X is the category of associative algebras with unit, a Beck module over a
ring X is a 2-sided X-module.

2. When X is the category of groups, a Beck module over a group X is a right X-
module.

3. When X is the category of Lie algebras, a Beck module over a Lie algebra X is just
an X-module.

Since the abelian group objects form a category, it is also of note that in these three
cases the category of Beck modules is exactly the category of modules in the usual sense.

Recently, a student from Paris named Léonard Guetta asked me if I knew what a
Beck module for a monoid is. This note answers that question. It is not what you would
usually think of as module for the monoid.

2. The objects

As is well-known, if a category X has finite limits, an abelian group object Y ∈ X is
given by an addition + : Y ×Y //Y , a negation − : Y //Y and a zero map 0 : 1 //X,
subject to the identities that characterize an abelian group. In the case of a slice category
X /X, the addition is a map Y ×X Y // Y over X, the negation must commute with p
and the zero map 0 : X // Y has to split p.

If X is a monoid, let p : Y // X be a monoid homomorphism. An abelian group
structure on Y requires maps + : Y ×X Y // Y , − : Y // Y and 0 : X // Y , all over
X and satisfying the abelian group axioms. If Mx = p−1(x), then Y ×X Y is just the
disjoint union of the Mx and the abelian group structure is on the fibres. Since the minus
map also preserves the fibres, it is clear that each fibre is an abelian group so that an
X-module is an X-indexed family of abelian groups.

c© Michael Barr, . Permission to copy for private use granted.

1



2

In the following, we will let x, x′, x′′ denote elements ofX, m,m1,m2 denote elements of
Mx, m′,m′1,m

′
2 denote elements of Mx′ and m′′ ∈Mx′′ . For reasons that will become clear,

we introduce the notation (x,m) for an element of Mx. Then Y = {(x,m) | x ∈ X,m ∈
Mx}. Since p is a monoid homomorphism, the product (x,m)(x′,m′) must have first
coordinate xx′ and we will explore what its second coordinate is. Since the 0 map, which
takes x to (x, 0) is also a monoid homomorphism, we must have (x, 0)(x′, 0) = (xx′, 0).

2.1. Lemma.

(x,m1)(x
′,m′1) + (x,m2)(x

′,m′2) = (x,m1 +m2)(x
′,m′1 +m′2)

Proof. Since + is a homomorphism of monoids, the diagran

Y ×X Y Y
+

//

(Y ×X Y )× (Y ×X Y )

Y ×X Y
��

(Y ×X Y )× (Y ×X Y ) Y × Y+×+ // Y × Y

Y
��

in which the vertical maps are the monoid multiplication, must commute. The monoid
structure in Y ×X Y is coordinate-wise. That is, ((x,m1), (x,m2))((x

′,m′1), (x
′,m′2)) =

((x,m1)(x
′,m′1), (x,m2), (x

′,m′2)). If we follow the element ((x,m1), (x,m2), (x
′,m′1), (x

′,m′2))
around the two paths, we get the desired equation.

For any x, x′ ∈ X,m ∈ Mx, the element (x,m)(x′, 0) ∈ Mxx′ and we denote it
(xx′,mx′). Similarly, for m′ ∈Mx′ , we write, (x, 0)(x′,m′) = (xx′, xm′).

2.2. Theorem.

(1) (m1 +m2)x
′ = m1x

′ +m2x
′;

(2) x(m′1 +m′2) = xm′1 + xm′2;

(3) (xx′)m′′ = x(x′m′′);

(4) (mx′)x′′ = m(x′x′′);

(5) (xm′)x′′ = x(m′x′′);

(6) (x,m)(x′,m′) = (xx′,mx′ + xm′)

Proof.

(1) We use 2.1

(x, (m1 +m2)x
′) = (x,m1 +m2)(x

′, 0) = ((x,m1) + (x,m2))((x
′, 0) + (x′, 0))

= (x,m1)(x
′, 0) + (x,m2)(x

′, 0) = (x,m1x
′) + (x,m2x

′) = (x,m1x
′ +m2x

′)
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(2) Dual.

(3) We use associativity in Y :

(xx′x′′, (xx′)m′′) = (xx′, 0)(x′′,m′′) = (x, 0)((x′, 0)(x′′,m′′))

= (x, 0)(x′x′′, x′m′′) = (xx′x′′, x(x′m′′))

(4) Dual

(5) Again from associativity in Y :

(xx′x′′, (xm′)m′′) = (xx′, xm′)(x′′, 0) = ((x, 0)(x′,m′))(x′′, 0)

= (x, 0)((x′,m′)(x′′, 0)) = (x, 0)(x′x′′,m′x′′)

= (xx′x′′, x(m′x′′))

(6) We use 2.1

(x,m)(x′,m′) = ((x,m) + (x, 0))((x′, 0) + (x′,m′))

= (x,m)(x′, 0) + (x, 0)(x′,m′) = (xx′,mx′) + (xx′, xm′)

= (xx′,mx′ + xm′)

To show that these properties characterize Beck modules for a monoid, let X be a
monoid and suppose we are given, for each x ∈ X an abelian group Mx and for each
x a function M ′

x
//Mxx′ , denoted m′ 7→ xm′, and for each x′ ∈ X a similar function

Mx
//Mxx′ . Let Y =

∑
Mx (disjoint union) and denote an element of Mx by (x,m).

Define a product on Y by (x,m)(x′,m′) = (xx′,mx′ +m′x).

2.3. Theorem. Suppose Y is as above and assume that the right and left multiplication
functions satisfy the conclusions of Theorem 2.2. Then the first coordinate function p :
Y //X is an abelian group object over X.

Proof. The first two conditions give additivity. We note that any function between
groups that preserves multiplication also preserves the identity (the only idempotent) and
then inverse. The next three conditions readily imply associativity of the multiplication.
So each fibre is an abelian group. The only thing left is to show that the abelian group
structure is a monoid homomorphism. This requires showing the formula 2.1(6):

((x,m1) + (x,m2))((x
′,m′1) + (x′,m′2)) = (x,m1)(x

′,m′1) + (x,m2)(x
′,m′2)

The left hand side of that equation is

(x,m1 +m2)(x
′,m′1 +m′2) = (xx′,m1x

′ +m2x
′ + xm′1 + xm′2)

while the right hand side is

(xx′,m1x
′ + xm′1) + (xx′,m2x

′ + xm′2) = (xx′,m1x
′ + xm′1 +m2x

′ + xm′2)
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3. The morphisms

Let Z =
⋃
Nx be another Beck module over X. Then an element of Z is a pair (x, n), n ∈

Nx and (x, n)(x′, n′) = (xx′, nx′ + xn′). A map f : Y // Z over X must have the form
f(x,m) = (x, fxm) in order to be over X. In order to be a map of abelian group objects,
it must be an additive map Mx

//Mx′ . But it must also be a monoid homomorphism.
Thus we must have that

f((x,m)(x′,m′)) = f(xx′,mx′+xm′) = (xx′, fxx′(mx′+xm′)) = (xx′, fxx′(mx′)+fxx′(xm′))

is the same as

f(x,m)f(x′m′) = (x, fxm)(x′, fx′m′) = (xx′, (fxm)x′ + x(fx′m′))

If we take the case m = 0, this implies that fxx′(xm′) = x(fx′m′) and similarly fxx′(mx′) =
(fxm)x′.

Conversely, the same computations show that an X-indexed family of homomorphisms
satisfying the last two equations will give us a morphism of additive group objects. Thus
we conclude

3.1. Theorem. Let M = {Mx} and N = {Nx} be X-modules and Y //X, Z //X be
the corresponding abelian group objects over X. An X-indexed family of group homomor-
phisms {fx : Mx

// Nx} determines a morphism of abelian group objects over X if and
only if fxx′(xm′) = x(fx′m′) and fxx′(mx′) = (fxm)x′.

3.2. Guetta’s description of the category. Léonard Guetta, looking at the
description of Beck modules above, came up with a different way of looking at them.
Suppose x, x′, t, t′ ∈ X are elements of X such that x′ = t′xt. Then there is a map
Mx

// Mx′ given by m 7→ t′mt. What Guetta noticed is that (t, t′) is a map in the
twisted arrow category of X. Like the arrow category, its objects are the elements
of X, that is, the arrows of the single object category X, but whose morphisms are the
“twisted arrows”, commutative diagrams

• •
x′

//

•

•

OO

t

• •x // •

•

t′

��

If we denote this category by TwAr(X) then anX-module is simply a functor TwAr(X) //Ab ,
the category of abelian groups. The morphisms described are simply the natural trans-
formations between such functors.

After the above was written, Guetta discovered the paper [Frankland, 2010], see Ex-
ample 5.5 (in which what he called the factorization category is exactly the same as the
twisted arrow category).
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4. Derivations

Another question that Beck answered with his concept of modules was the meaning Der.
If X is a ring and M an X-module, a map d : X //M is called a derivation if it is
additive and d(xx′) = (dx)x′ + x(dx′). If X is a group and M a right X-module, then
a derivation is a function d : X //M such that d(xx′) = (dx)x′ + dx′. In that case it
is also called a crossed homorphism. Note that if the right action is also trivial, it is
simply a homomorphism to the abelian group X. Beck showed that the group Der(X,M)
is canonically isomorphic to the abelian group HomX(X, Y ) in both cases (also for the
Lie algebra case which has its own definition of derivation. It is just as easy to show
that if Z // X is any object of X /X and M is made into a Z-module via Z // X,
then Der(Z, Y ) ∼= HomX(Z, Y ). These two questions, what is a module and what is a
derivation were the two questions that he had to answer to carry out his program of
defining the cotriple cohomology. If G = (G, ε, δ) is a cotriple on X , the cohomology
of X with coefficients in M is the cohomology of the cochain complex associated to the
cosimplicial set

Der(GX,M) Der(G2X,M) Der(G3X,M) · · ·////
//
//// ////

////

in which the cofaces ∂in : Der(Gn,M) //Der(Gn+1,M) are induced by the maps GiεGn−i :
Gn+1 //Gn.

5. Examples

The first example is that of a monoid X and an abelian group M equipped with an X-
action in the usual way, that is an X-module. Then we let M − x = M independent
of x ∈ X. We can identify Y = X ×M and let λ − x′, x : Mx

//Mx′x be simply act
as left multiplication by x and similarly for ρx′,x : Mx

//Mxx′ . Then (x,m)(x′,m′) =
(xx′,mx′ + xm′).

The second example requires a monoid X in which there are no invertible elements
except the identity. That being the case, let M be an arbitrary abelian group and let
M1 = M and Mx = 0 for all x 6= 1. Then for x 6= 1, both left and right multiplication by
x is the zero map.

6. Groups

It is known that if X is a group, a Beck module for X is just a right module in the
usual sense. But it is interesting to see what the development above means in this case.
First we note that if X is a group and Y //X is an abelian group object over X, then
Y is also a group since (x,m)(x−1,−x−1mx−1) = (1,mx−1 − mx−1) = (1, 0). Thus an
abelian group object is the same in the category of monoids over X and of groups over
X. Since multiplication by x ∈ X is invertible, the Mx are isomorphic, although not



6

canonically. However, M = M1 acquires a right X-module structure by conjugation since
(x−1, 0)(1,m)(x, 0) = (1, x−1mx).

Let Z //X denote the abelian group object over X determined by this right module
with identity operation on the left. That is to say that Z = X ×M as a set and the mul-
tiplication is given by (x,m)(x′,m′)(xx′, x′−1mx′+m′). We have, somewhat surprisingly:

6.1. Proposition. The map f : Z // Y given by f(x,m) = (x, xm) is an isomorphism
of groups.

Proof. Clearly it is invertible by the map g give by g(x,m) = (x, x−1m). To show it is
a homomorphism, we compute

f((x,m)(x′,m′)) = f(xx′, x′−1mx′ +m′) = (xx′, xmx′ + xx′m′)

= (x, xm)(x′, x′m′) = f(x,m)f(x′,m′)

What is interesting about this is if we begin with an X-module M , use its given
structure to build Y and then let N = M , but with the right module conjugation struc-
ture and construct Z, then Y ∼= Z, but M 6∼= N since the isomorphism can be con-
structed only with the help of X.1 Since we know that for any group W //X, the group
HomX(W,Y ) = Der(Y,M) and similarly for Z. In particlar, if W is free on one generator,
then HomX(W,Y ) ∼= M , while HomX(W,Z) ∼= N . Then M ∼= N , but only as abelian
groups, which we already knew.

Although the following is implicit in the above, it is amusing to point out that if X
is a group and M is a 2-sided X-module, then when N = M , except with the conjugate
right operation, then Der(X,M) ∼= Der(X,N). In fact, let us change notation and write
M · for the module M with m · x = x−1mx and x · m = m. Then, given a derivation
d : X //M , we define d· : X //M · by d·x = x−1(dx). Then

d·(xy) = y−1x−1d(xy) = y−1x−1((dx)y + x(dy)) = (d·x) · y + d·y

so that d· is a derivation into M ·. Conversely, given a derivation d· : X //M ·, define
d : X //M by dx = x(d·x). Then

d(xy) = xyd·(xy) = xy((d·x) · y + d·y) = xyy−1(d·x)y + xy(d·y)

= x(d·x)y + x(dy) = (dx)y + x(dy)

Clearly these operations are inverse to each other so that the groups of derivations are
isomorphic, but the modules are not.

1This argument is not complete. But, as pointed out to me by George Janelidze, the categories of right
modules and 2-sided modules cannot in general be equivalent. For example, should X be a commutative
group, the category of right modules is the category of modules over the integer group ring Z[X], while
the category of 2-sided modules is the category of modules over Z[X]⊗Z[X] and two commutative rings
cannot be Morita equivelent unless they are isomorphic. For X = Z, say they are not since they are
polynomials in one and two variables, respectively, with different homological dimensions.
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