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Abstract

I have given two apparently different the regular category
embedding theorem. The first, gotten by adapting the Lubkin’s
argument for the abelian category, is rather opaque. The second,
gotten by adapting Mitchell’s proof is much more elegant. Mitchell
used Grothendieck’s theorem that an AB5 category with a
generator has an injective cogenerator. However, the analogous
result for regular categories fails. It turns out that full injectivity is
not needed.

Surprisingly, it turns out that “under the hood” the two proofs are
really doing much the same thing. It is using functors rather than
representing diagrams that makes the difference.
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Regular and exact categories

A category C is called regular if it has finite limits, coequalizers
and if the regular epimorphisms are stable under pullback. It is
called exact if, in addition, every equivalence relation is a kernel
pair.

These conditions can be weakened somewhat, but it is not worth
the effort to do so.

The regular category embedding theorem states that every small
regular category has a full and faithful embedding into a set-valued
functor category that preserves finite limits and regular epics. For
exact categories, we can add the preservation of coequalizers of
equivalence relations. That is an easy gloss on the regular
embedding theorem so will concentrate in this talk on that result.
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Some properties of regular categories

The most important property is that ever morphism f : A // B

can be factored A
g // // C // h // B where g is regular epic and h is

monic. Among other things this implies that the composite of
regular epics is regular epic, which is not true for general
categories. In a regular category, a morphism is a regular epic iff it
is extremal. This means that it is not possible to factor it through
any proper subobject of its codomain. In general extremal epics (in
a complete category) are composites, even transfinite composites,
of regular epics.
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Finite limit preserving functors

From now on, C is a small regular category, F = FL(C , Set ) is the
category of finite limit preserving functors from C to sets and
X = F op. The functor that takes A ∈ C to Hom(A,−) gives a
contravariant embedding of C into F and therefore a covariant
embedding of C into X . For the most part, we will treat C as a
subcategory of X so write C instead of Hom(C ,−). We begin with

X is complete and cocomplete. We know that every functor F is
the colimit of all the arrows Hom(A,−) // F with A ∈ C and it is
an easy exercise to show that this diagram is filtered iff F preserves
finite limits. Thus in X , every F is a filtered limit of all arrows
F // A.

Proposition. X is regular.

We will need some diagrams to show the regularity.
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But first, an important obeservation

Suppose colimAi
// A is an isomorphism. Then

Hom(A,−) //Hom(colimAi ,−) and therefore
Hom(A,−) // limHom(Ai ,−) are isomorhisms in (C , Set ) and
hence also in F , the subcategory of finite limit preserving functors.
But then colimHom(Ai ,−) //Hom(A,−) is an isomorphism in
X = F op. This means that C // X preserves colimits as well, of
course, as finite limits. In particular, it preserves regular epics and
the regular epic/monic factorization of morphisms, which is what
we need.
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Some diagrams
Consider a pullback:

K H

G F

//

�� ��
// //
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Some diagrams
And some maps to representables:

K H

G F

C

B A

//

�� ��
// //

??���������������

�����������������

��????????????????
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Some diagrams
A factorization:

K H

G F

C

B A

A× B

//

�� ��
// //

??���������������

��������

��������

��????????????????
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Some diagrams

B // // suppB // // 1

A× B // // A× suppB // // A× 1 = A

A× suppB A// //

H

A× suppB

H F// // F

A
��

H

A× B
��

A× B

A× suppB
��

F

A× suppB
���

�
�

�
�

�
�

�
�

�
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Some diagrams
Continuing:

K H

G F

C

B A

A× B A× suppB

//

�� ��
// //

??���������������

��������

��������

��??????

��??????
// //
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Some diagrams
Continuing:

K H

G F

C

B A

A× suppB × C

A× B A× suppB

//

�� ��
// //

??�����

??������

��������

��������

��??????

��??????
// //
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Some diagrams
Pullback:

K H

G F

C

B A

A× B × C A× suppB × C

A× B A× suppB

//

�� ��
// //

??�����

??������

��������

��������

��??????

��??????
// //

�� ��

// //
__?

?
?
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X is regular, finish

The sequence A× B × B × C //// A× B × C // A× suppB × C
is a coequalizer/kernel pair. As A, B, and C range over all the
maps from F , G , and H, resp. to an object of C ,
A× suppB, A×B, and A× suppB × C , resp., range over coinitial
subsets of those cofiltered families and hence their limits are, resp.
F , G , and H. Since a limit of pullback diagrams is a pullback, we
conclude that K = lim(A× B × C ) and similarly K ×H K is the
colimit of the A× B × B × C . Since filtered limits preserve finite
colimits, we further conclude that K // // H is a regular epic.

The argument actually shows that the opposite of the category of
finite product preserving functors in (C , Set ) is also regular. In
order to do this, you need to know that such a functor preserves
supports, for which it suffices that it preserve the property of being
a subobject of 1. But E // 1 is a monomorphism iff the diagonal
E // E × E is an isomorphism.
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Lemma

For every F ∈ X , there is a regular epic F# // // F such that every
diagram

B A// //

F#

B
���
�
�
�
�F# F// // F

A
��

can be filled in as shown.
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Proof of lemma.
Fix F and well order all possible diagrams of the form

B A// //B

FF

A
��

Let F0 = F and having chosen Fα, choose the next F // A oooo B
in the well-ordering and let

B A// //

Fα+1

B
��

Fα+1 F// // F

A
��

be a pullback. At a limit ordinal α, let Fα = limβ<α Fβ.
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Theorem

Every F can be covered by a projective.

Proof. Let F (0) = F , F (n+1) = F (n)#, and F ∗ = limF (n). We
claim that any map F ∗ // A factors through an F ∗ // F (n). In
fact, for any functor F

HomX (F ,Hom(−,A)) ∼= HomF (Hom(−,A),F ) ∼= FA

(Yoneda) and then

HomX (F ∗,Hom(−,A)) = HomX (limF (n),Hom(−,A))

= HomF (Hom(−,A), colimF (n))

= (colimF (n))(A)
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Proof, continued

But colimits in the functor category F are computed “pointwise”,
meaning (colimF (n))(A) = colim(F (n)(A)) so that each element of
(colimF (n))(A) is represented by a morphism F (n) // A in X .
This gives

B A// //

F (n+1)

B
��

F (n+1) F (n)// F (n)

A
��

F (n+1) F (n)//

F ∗

F (n+1)
zzvvvvvvvvvvvvvv

F ∗

F (n)
��

so that F ∗ is a C -projective cover of F .
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The subcategory P

We let P denote the full subcategory of X consisting of projective
cover PA of every A ∈ C as well as, for each such PA, a projective
cover P ′A of the kernel pair PA ×A PA. The result is a coequalizer
diagram in X

P ′A
d0 //

d1
// PA

d // A

for each A ∈ C .

Note that the functors in P take regular epics in C to surjections
in Set .
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The main theorem

The functor C // (P op, Set ) that takes A to evaluation at A is full
and faithful.

Proof. The embedding takes A ∈ C to
Φ(A) = HomP (−,A) : P op // Set . A natural transformation
ν : Φ(A) // Φ(B) assigns to each f : P // A, a map
ν(f ) : P // B such that for all g : Q // P the square

Hom(P,B) Hom(Q,B)
Hom(g ,B)

//

Hom(P,A)

Hom(P,B)

ν

��

Hom(P,A) Hom(Q,A)
Hom(g ,A) // Hom(Q,A)

Hom(Q,B)

ν

��

which means that ν(fg) = ν(f )g .
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Proof continued

Apply this to

P ′ P
d0

//
P ′ P

d1
// P A

d //P

B

ν(d)

""DDDDDDDDDDDDDD A

B

f

���
�
�
�
�

From
ν(d)d0 = ν(dd0) = ν(dd1) = ν(d)d1

we see there is a unique f : A // B such that fd = ν(d). Thus
C // (P op, Set ) is full and faithful.
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Brief comparison with the original proof

As I was thinking about this argument, I realized that it is not that
different, after all, from the original one. The latter was based on
construction of some very complicated cofiltered diagrams and the
embedding was gotten my mapping diagrams to objects. But these
diagrams just represented limit preserving functors. Moreover, they
were constructed by adding, one at a time, indexed by ordinals, a
regular to the diagram and then making it cofiltered again. This is
so like the construction above that I realized it had to be
essentially the same. The point is that in replacing the diagrams
by the functors they represent, the whole idea becomes much more
transparent.
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