1. (30 points) Evaluate the following integrals.

(a)
$$\int \frac{x^2 - x + 13}{(x+1)(x^2+4)} dx$$

(b)
$$\int e^{-2x} \sin(3x) \, dx$$

(c)
$$\int_{3}^{4} \frac{\tan^{3}(\pi/x)}{x^{2}} dx$$

(d)
$$\int \frac{1}{x^4 \sqrt{x^2 - 1}} dx$$

(e)
$$\int \frac{1}{x\sqrt{2x-9}} \, dx$$

(f)
$$\int x^5 e^{-x^2} dx$$

2. (8 points) Evaluate each of the following limits.

(a)
$$\lim_{x \to \infty} \frac{\arctan(2x) - \pi/2}{\sin(1/x)}$$

(b)
$$\lim_{x\to 0} (1+\sin^2 x)^{4/x^2}$$

3. (8 points) Evaluate each of the following improper integrals.

(a)
$$\int_{-1}^{0} \frac{e^{1/x}}{x^2} dx$$

(b)
$$\int_{e^2}^{\infty} \frac{\ln x}{(x \ln x - x)^2} dx$$

- **4.** (4 points) Find the length of the curve $y = \frac{1}{2}x^2 \frac{1}{4}\ln x$ on the interval $[1, e^2]$.
- **5.** (9 points) Let \Re be the region bounded by $y = \sqrt{x}$ and $y = \frac{1}{8}x^2$. Set up, **but do not evaluate**, the integral needed to find:
 - (a) The area of \Re .
 - (b) The volume of the solid of revolution obtained by rotating \Re about:
 - (i) The y-axis.
 - (ii) The x-axis.
 - (iii) The line x = -2.
- **6.** (4 points) Find an explicit solution of the differential equation.

$$(xy^2 + x) + (x^2y - y)\frac{dy}{dx} = 0$$
 , $y(0) = -2$

7. (4 points) A tank initially contains $100\,\mathrm{L}$ of water in which $25\,\mathrm{g}$ of salt has been dissolved. Pure water enters the tank at a rate of $5\,\mathrm{L/min}$. The solution is kept thoroughly mixed and drains from the tank at rate of $5\,\mathrm{L/min}$. How much salt is in the tank after $20\,\mathrm{minutes}$?

- **8.** (3 points) Given the sequence $\left\{ \frac{2}{1}, \frac{4}{2}, \frac{8}{6}, \frac{16}{24}, \frac{32}{120}, \frac{64}{720}, \ldots \right\}$
 - (a) Find a formula for the general term a_n .
 - (b) Determine whether the sequence is convergent or divergent.
- 9. (9 points) Determine whether the following series converge or diverge.
 - (a) $\sum_{n=1}^{\infty} \frac{e^{3/n^2}}{n}$
 - (b) $\sum_{n=1}^{\infty} \left(\frac{4n-1}{25n+1} \right)^{n/2}$
 - (c) $\sum_{n=1}^{\infty} \frac{n}{2n+1} \cos(3/n)$
- 10. (8 points) Determine whether the following series are absolutely convergent, conditionally convergent, or divergent.
 - (a) $\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$
 - (b) $\sum_{n=1}^{\infty} (-1)^n \frac{(2n)^{2n}}{(2n)!}$
- 11. (4 points) Find the radius and interval of convergence of the power series.

$$\sum_{n=0}^{\infty} (-1)^n \frac{(x+2)^n}{5^n \sqrt{n+1}}$$

- **12.** (4 points) Let $f(x) = \frac{1}{(1-2x)^2}$.
 - (a) Find the first 5 terms of the Maclaurin series of f(x).
 - (b) Express the Maclaurin series of f(x) in summation notation.
- **13.** (5 points) (a) Given that $\int f(x) dx = x \arccos(5x) \frac{1}{5}\sqrt{1 25x^2} + C$, find f(x).
 - (b) Show (without actually calculating it) that the area under the curve $y = e^{\sqrt{x}}$ on the interval [0, 1] is the same as the area under the curve $y = e^{\sin x} \sin(2x)$ on the interval $[0, \frac{\pi}{2}]$.
 - (c) Answer True or False (briefly justify).
 - (i) If $a_n > 0$ and $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} \frac{1}{a_n}$ converges.
 - (ii) If $a_n > 0$ and $\lim_{n \to \infty} n^2 a_n = 0$, then $\sum_{n=1}^{\infty} a_n$ converges.

Answers

1.(a)
$$3 \ln |x+1| - \ln(x^2+4) + \frac{1}{2}\arctan(\frac{x}{2}) + C$$
 (b) $\frac{-1}{13}(3e^{-2x}\cos(3x) + 2e^{-2x}\sin 3x) + C$

(c)
$$\frac{2-\ln 2}{2\pi}$$
 (d) $\frac{\sqrt{x^2-1}}{x} - \frac{1}{3} \left(\frac{\sqrt{x^2-1}}{x}\right)^3 + C$ (e) $\frac{2}{3} \arctan\left(\frac{\sqrt{2x-9}}{3}\right) + C$

(f)
$$\frac{1}{2}[-x^4e^{-x^2}-2(x^2e^{-x^2}+e^{-x^2})]+C$$
 2.(a) $-\frac{1}{2}$ (b) e^4 3.(a) $\frac{1}{e}$ (b) $\frac{1}{e^2}$ 4. $\frac{e^4}{2}$

5.(a)
$$\int_0^4 \sqrt{x} - \frac{1}{8}x^2 dx$$
 (b)(i) $2\pi \int_0^4 x(\sqrt{x} - \frac{1}{8}x^2) dx$ (ii) $\pi \int_0^4 (\sqrt{x})^2 - (\frac{1}{8}x^2)^2 dx$

(iii)
$$2\pi \int_0^4 (2+x) \left(\sqrt{x} - \frac{1}{8}x^2\right) dx$$
 6. $y = -\sqrt{\frac{5}{1-x^2} - 1}$ 7. $\frac{25}{e}$ 8.(a) $a_n = \frac{2^n}{n!}$

(b) Conv. to 0 9.(a) Div. by comp. with
$$\sum \frac{1}{n}$$
 (b) Conv. by Root Test (c) Div. by Div. Test

10.(a) Cond. conv. (b) Div. 11.
$$R = 5$$
, IC: $-7 < x \le 3$ 12. $\sum_{n=0}^{\infty} (n+1)2^n x^n$

13. (a) $\arccos(5x)$

(b) Hint: Show subs.
$$u = \sqrt{x}$$
 for $\int_0^1 e^{\sqrt{x}} dx$ gives the same as subs. $u = \sin x$ for $\int_0^{\pi/2} e^{\sin x} \sin(2x) dx$