(Marks)

- (4)1. Find the third degree Taylor polynomial $T_3(x)$ for $f(x) = \sqrt{x}$ centered at x = 4. Use $T_3(5)$ to estimate $\sqrt{5}$, and Taylor's Inequality/Formula to estimate the accuracy of this estimate.
- 2. Let $f(x) = \int_0^x t\sqrt{t}\sin(\sqrt{t}) dt$ (5)
 - (a) Find the Maclaurin series for f(x); express your answer in Σ notation.
 - (b) Use this series to approximate f(0.1) to within 10^{-7} . Justify the correctness of your approximation.
- 3. Use the Binomial theorem to obtain the Maclaurin series for $\frac{1}{\sqrt{1-r^2}}$. (5)
 - (a) What is the interval of convergence of this series?
 - (b) Using this series, find the Maclaurin series of $\arcsin(x)$. (Remember $\frac{d \arcsin(x)}{dx} = \frac{1}{\sqrt{1-x^2}}$.)
 - (c) What is the radius of convergence for this series?
 - (d) Finally, use this series to obtain an infinite series whose sum is π . (Hint: try to find such a series whose sum is $\frac{\pi}{6}$ first, then multiply it by 6.)
- 4. Consider the following polar curves: $r_1 = \cos \theta$ and $r_2 = \sin 2\theta$. (8)
 - (a) Sketch the graphs on the same axes.
 - (b) Find all points of intersection (in Cartesian coordinates).
 - (c) Set up, but do **not** evaluate, an integral expression to find the area common to both curves.
 - (d) Set up and evaluate an integral expression to find the length of the first curve, r_1 . Explain why you knew this value before evaluating the integral.
- 5. Given the curve C with parametric equations $x = t^3 + 1$, $y = t^2 3$: (8)
 - (a) Find the x and y-intercepts.
- (b) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. Simplify your answers.
- (c) Locate all points where the tangent is horizontal or vertical (identify which is which).
- (d) Sketch the curve showing all these points and the intercepts, and indicate with an arrow the direction of increasing t values (the orientation).
- (e) Find the area of the region below the x-axis and above the curve.
- (f) Find the arc length of the section of the curve that lies below the x-axis (i.e. the length of the curve between its x-intercepts).
- 6. Sketch and name each of the following surfaces in \mathbb{R}^3 . Show all relevant work. (9)
 - (a) $2r^2 z = 4$

- (b) $\rho = 2\cos\varphi$ (c) y = (z x)(z + x)
- 7. A particle P moves along a curve $r(t) = \sin(t)\cos(t)i + \sin^2(t)j + tk$. (8)
 - (a) Calculate the length of the curve from t=0 to $t=2\pi$.
 - (b) Find the unit tangent vector T(t), the unit normal vector N(t), the curvature $\kappa(t)$, and the tangential and normal components a_T, a_N of acceleration.

Hint: You might find the double angle formulas make this simpler—though it can be done without them.

(Marks)

(5) 8. Let
$$z = f(x, y) = \frac{x + y^2}{xy}$$
.

- (a) Find the total differential dz.
- (b) Find the tangent plane to the surface z = f(x, y) at (-1, 1).
- (c) Calculate the linear approximation dz to $\Delta z = f(Q) f(P)$, where P = (-1, 1) and Q = (-0.9, 1.05), and so estimate f(-0.9, 1.05).
- 9. Let z = f(x,y) and z = g(x,y) be two surfaces which intersect at the origin, so that f and g (3)are differentiable at the origin. Show that the tangent planes to the two surfaces at the origin are perpendicular if and only if $\frac{\partial f}{\partial x} \frac{\partial g}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial g}{\partial y} = -1$ at the origin.
- 10. Calculate the following limits; if a limit does not exist, say so (and mention $\pm \infty$ if appropriate). (6)

(a)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x-y)}{\cos(x+y)}$$
 (b) $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^4+2y^4}$ (c) $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+2y^4}$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^4+2y^4}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+2y^4}$$

Be sure to justify your answers.

- 11. Suppose f(x,y) is a differentiable function, with the property that for any t, $f(tx,ty)=t^2f(x,y)$. (3)Calculate $\frac{\partial}{\partial t}(f(tx,ty))$. There are two ways you could do this: do both! From this, show that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 2 f(x, y)$.
- 12. Given the (level) surface (sphere) S: $f(x, y, z) = x^2 + y^2 + z^2 = 14$ and the point P(1, 2, 3), find: (5)
 - (a) the directional derivative of f at the point P in the direction of $v = \langle 2, 1, 3 \rangle$;
 - (b) the maximum rate of change in f at P; and
 - (c) the parametric equations of the tangent line at P to the curve of intersection of \mathcal{S} and the plane given by x + y + z = 6.
- (5) 13. Use Lagrange multipliers to find the surface area of a rectangular box with no top whose total volume is 10cm^3 and whose total surface area (of its 5 faces) is as small as possible.
- 14. Find and classify the critical points of $f(x,y) = 3xy x^2y xy^2$ (6)
- 15. (a) Evaluate $\int_{0}^{1} \int_{-1/3}^{1} \sqrt{1-y^4} \, dy \, dx$ (6)
- (b) Rewrite the integral $\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} dz \, dy \, dx$ in the order $dx \, dy \, dz$.
- 16. Let \mathcal{R} be the region above the xy-plane, and under the paraboloid $z=1-x^2-2y^2$. Set up an (4)appropriate integral to calculate the volume of \mathcal{R} . (You do not have to evaluate the integral.)
- 17. Let \mathcal{H} be the top half of the sphere $x^2 + y^2 + z^2 = 1$ (i.e. above z = 0 and inside the sphere). Calculate $\iiint_{\mathcal{H}} (2 \sqrt{x^2 + y^2 + z^2}) \ dV$. (6)
- 18. Let \mathcal{D} be the wedge-shaped region bounded as follows: above y=0, below y=x, and inside (4) $x^2 + 4y^2 = 4$. Evaluate $\iint_{\mathbb{R}} \frac{y}{x} dxdy$. Hint: Use the change of variable $u = x^2 + 4y^2$ and v = y/x.

Answers

1.
$$T_3 = 2 + \frac{1}{4}(x - 4) - \frac{1}{64}(x - 4)^2 + \frac{1}{512}(x - 4)^3$$
; $T_3(5) = 2 + \frac{1}{4} - \frac{1}{64} + \frac{1}{512} = 2.236328$ $|R_3(5)| \le \frac{15}{16} \cdot 3^{-7/2} \cdot \frac{1}{24} = 0.000835$; so $T_3(5) = 2.236328 \pm 8.35 \times 10^{-4}$;

2. (a)
$$\sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 \mp \cdots$$
; $t^{3/2}\sin\sqrt{t} = t^2 - \frac{1}{3!}t^3 + \frac{1}{5!}t^4 \mp \cdots$; So

$$\int_0^x t^{3/2} \sin \sqrt{t} \, dt = \frac{1}{3}x^3 - \frac{1}{4 \cdot 3!}x^4 + \frac{1}{5 \cdot 5!}x^5 \mp \dots = \sum_{n=3}^{\infty} (-1)^{n+1} \frac{x^n}{(2n-5)!n}$$

(b)
$$f(0.1) = \frac{1}{3}0.1^3 - \frac{1}{4.3!}0.1^4 \pm \frac{1}{5.5!}0.1^5 = 0.0003291667 \pm 1.6 \times 10^{-8}$$

3.
$$(1-x^2)^{-1/2} = 1 + \frac{1}{2}x^2 + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-x^2)^2 + \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})}{3!}(-x^2)^3 + \dots = 1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{2^n n!}x^{2n-1} = 1 + \frac{1}{2}x^2 + \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{5}{2})}{2!}(-x^2)^2 + \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})}{3!}(-x^2)^3 + \dots = 1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{2^n n!}x^{2n-1} = 1 + \frac{1}{2}x^2 + \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{5}{2})}{2!}(-x^2)^2 + \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})}{3!}(-x^2)^3 + \dots = 1 + \frac{1}{2}x^2 + \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{5}{2})}{2!}(-x^2)^2 + \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})}{3!}(-x^2)^3 + \dots = 1 + \frac{1}{2}x^2 + \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{3}{2})}{2!}(-x^2)^3 + \dots = 1 + \frac{(-\frac{1}{2})(-\frac{3}{2})(-$$

(a) Interval of convergence:
$$(-1,1)$$

(b)
$$\arcsin(x) = \int_0^x \frac{dt}{\sqrt{1-x^2}} = x + \sum_{n=1}^\infty \frac{(2n-1)!!}{2^n \, n! \, (2n+1)} x^{2n+1}$$

(c) Radius of convergence: 1 (d)
$$\frac{\pi}{6} = \arcsin(\frac{1}{2})$$
 so $\pi = 3 + \sum_{n=1}^{\infty} \frac{6(2n-1)!!}{2^{3n+1}n!(2n+1)}$

- 4. (a): Graph at right
 - (b) Intersections: $(0,0), (\frac{3}{4}, \pm \frac{\sqrt{3}}{4})$ (in polar at right:)
 - (c) $A = 2\left(\frac{1}{2}\int_0^{\pi/6}\sin^2 2\theta \,d\theta + \frac{1}{2}\int_{\pi/6}^{\pi/2}\cos^2\theta \,d\theta\right)$
 - (d) $l = \int_0^{\pi} \sqrt{\cos^2 \theta + \sin^2 \theta} \, d\theta = \pi$ (= circumference of circle with radius $\frac{1}{2}$: $2\pi(\frac{1}{2}) = \pi$).

- 5. (a) y-intercepts: (0,-2) @ t=-1; x-intercepts: $(1\pm 3\sqrt{3},0)$ @ $t=\pm \sqrt{3}$
 - (b) $\frac{dy}{dx} = \frac{2}{3t}$ and $\frac{d^2y}{dx^2} = -\frac{2}{9t^4}$
 - (c) No HT; VT at (1, -3) @ t = 0.
 - (d) Graph at right
 - (e) $A = \int_{-\sqrt{3}}^{\sqrt{3}} -(t^2 3)(3t^2) dt = \frac{36}{5}\sqrt{3}$
 - (f) $s = \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{9t^4 + 4t^2} dt$ = $\int_{-\sqrt{3}}^{\sqrt{3}} t\sqrt{9t^2 + 4} dt = \frac{2}{27} (31\sqrt{31} - 8)$

6. Three graphs: (a) a circular paraboloid (b) a sphere (c) A hyperbolic paraboloid

- 7. (a) $\mathbf{v} = \langle \cos 2t, \sin 2t, 1 \rangle$ so $v = \sqrt{2}$, so $s = \int_0^{2\pi} \sqrt{2} \, dt = 2\sqrt{2}\pi$
 - (b) $T(t) = \frac{1}{\sqrt{2}} \langle \cos 2t, \sin 2t, 1 \rangle$; $N(t) = \langle -\sin 2t, \cos 2t, 0 \rangle$; $\kappa = 1$; $a_T = 0$; $a_N = 2$
- 8. (a) $dz = -\frac{y}{x^2} dx + (\frac{1}{x} \frac{1}{y^2}) dy$
 - (b) f(-1,1) = 0; @ (-1,1,0) : $\frac{\partial z}{\partial x} = -1$, $\frac{\partial z}{\partial y} = -2$, so the tangent plane is x + 2y + z = 1(c) $\Delta z \approx dz = (-1)(-0.9 + 1) + (-2)(1.05 1) = -0.2$ so $f(-0.9, 1.05) \approx -0.2$
- 9. The two normals are $\langle f_x, f_y, -1 \rangle, \langle g_x, g_y, -1 \rangle$ and are perpendicular if their dot product is 0, so: $f_x g_x + f_y g_y + 1 = 0$ (qed).
- 10. (a) 0 (plug in) (b) DNE (consider paths $x = 0, y = x \ e.g.$) (c) 0 (squeeze theorem)
- 11. $\frac{\partial}{\partial t}(f(tx,ty)) = xf_x(tx,ty) + yf_y(tx,ty) = \frac{\partial}{\partial t}(t^2f(x,y)) = 2tf(x,y)$. Let t = 1: $xf_x + yf_y = 2f(x,y)$
- 12. (a) $\nabla(f) = \langle 2x, 2y, 2z \rangle = \langle 2, 4, 6 \rangle$ @ P. $\mathbf{u} = \frac{\mathbf{v}}{v} = \frac{1}{\sqrt{14}} \langle 2, 1, 3 \rangle$, so $f_{\mathbf{u}} = \frac{26}{\sqrt{14}}$
 - (b) max rate = $|\nabla(f)(P)| = \sqrt{56}$
 - (c) $\mathbf{n} = \langle 1, 2, 3 \rangle \times \langle 1, 1, 1 \rangle$ is parallel to $\langle 1, -2, 1 \rangle$ so the equations are $\{x = 1 + t, y = 2 2t, z = 3 + t\}$.
- 13. V = xyz = 10; A = xy + 2xz + 2yz; $\{\nabla A = \lambda \nabla V; V = 10\}$. Solving these equations gives $x = y = \sqrt[3]{20}, z = \frac{1}{2}\sqrt[3]{20}$
- 14. $f_x = 3y 2xy y^2 = 0$; $f_y = 3x x^2 2xy = 0$ so four solutions: (0,0), (1,1), (3,0), (0,3). $D = 4xy (3 2x 2y)^2$: @ (1,1) a max; @ (0,0), (3,0), (0,3): saddles
- 15. (a) $=\int_{0}^{1}\int_{0}^{y^{3}}\sqrt{1-y^{4}}\,dx\,dy=-\frac{1}{6}(1-y^{4})^{3/2}\Big]^{1}=\frac{1}{6}$ (b) $=\int_{0}^{1}\int_{0}^{1-z}\int_{-\sqrt{z}}^{\sqrt{y}}dx\,dy\,dz$
- 16. $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{\frac{1-x^2}{2}}} \int_{0}^{1-x^2-2y^2} dz \, dy \, dx$
- 17. $\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{1} (2-\rho)\rho^{2} \sin\varphi \,d\rho \,d\varphi \,d\theta = 2\pi \int_{0}^{\pi/2} \sin\varphi \,d\varphi \int_{0}^{1} (2\rho^{2}-\rho^{3}) \,d\rho = \frac{5\pi}{6}$
- 18. $=\int_0^1 \int_0^4 \frac{v}{2+8v^2} du dv = \frac{1}{4} \ln 5$