1. (30 points) Evaluate the following integrals.

(a)
$$\int \frac{x^3 + 4}{x^2(x+2)^2} dx$$
 (b) $\int \frac{\ln x}{x^{3/2}} dx$
(c) $\int x \sec^6(x^2) dx$ (d) $\int \frac{dx}{(4x^2+1)^{5/2}}$
(e) $\int_0^1 x \arctan x dx$
(f) $\int_0^{\pi/3} \sec x \ln(\sec x + \tan x) dx$

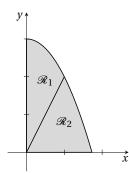
2. (6 points) Evaluate the following limits.

(a)
$$\lim_{x \to 1^-} \frac{\arccos x}{\sqrt{1-x}}$$
 (b) $\lim_{x \to 0} (e^x - x)^{1/x^2}$

3. (10 points) Evaluate each improper integral or show it diverges.

(a)
$$\int_{1}^{2} \frac{dx}{\sqrt{4-x^{2}}}$$
 (b) $\int_{-\infty}^{\infty} \frac{e^{x}}{e^{2x}+1} dx$

- **4.** (3 points) Set up, but **do not evaluate**, the integral(s) for the area of the region enclosed by the parabola $y = x^2$ and the curve $y = x^3 12x$.
- **5.** (6 points) The shaded area in the figure is bounded by $y = 3 x^2$, x = 0, and y = 0. The line y = 2x subdivides this area into two regions \Re_1 and \Re_2 . Set up, but **do not evaluate**, an integral for the volume of the solid obtained by:
 - (a) rotating \mathcal{R}_1 about the *y*-axis,
 - (b) rotating \Re_2 about the vertical line x = -1.



6. (5 points) Express *y* as a function of *x* if

$$\sqrt{x^2 + 9} \, \frac{dy}{dx} = xe^{4-y}$$

and y = 4 if x = 0.

- 7. (5 points) A chemical plant discharges toxic solvents into the ground at a rate of 5 tons per year. These solvents do not all stay in the ground: each year, $\frac{1}{10}$ of the total amount of solvents evaporates into the air.
 - (a) Find a formula for the total amount *A*(*t*) of solvents in the ground after *t* years, assuming there are initially none.
 - (b) In the long run, how many tons of solvents will accumulate in the ground?

8. (4 points) Determine whether the sequence $\{a_n\}$ converges or diverges. Justify your answer: if the sequence converges, find the limit; otherwise, explain why it diverges.

(a)
$$a_n = \frac{\cos(n!)}{5n+1}$$
 (b) $a_n = (-1)^n \frac{e^n}{e^n + n}$

9. (4 points) Given the series $\sum_{n=1}^{\infty} \ln\left(\frac{2n-1}{2n+1}\right)$,

- (a) find an expression for its partial sums s_n ,
- (b) use $\{s_n\}$ to determine whether the series is convergent or divergent. If it is convergent, find its sum.
- **10.** (9 points) Determine whether the series converges or diverges. Justify your answer.

(a)
$$\sum_{n=1}^{\infty} n \sin\left(\frac{1}{n}\right)$$
 (b) $\sum_{n=1}^{\infty} \frac{\sqrt{2n+3}}{5n^2 - 4n}$
(c) $\sum_{n=1}^{\infty} \left[\frac{\ln n}{\sqrt{n}} - \frac{1}{6^n}\right]$

11. (8 points) Determine whether the series is absolutely convergent, conditionally convergent, or divergent. Justify your answer.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{2^{n+1}}{n+2^n}\right)^{-n}$$

(b) $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{n\sqrt{\ln n}}$

12. (5 points) Find the radius and interval of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{3^n (x+1)^n}{\sqrt{2n+1}}$$

13. (2 points) Write the first four terms of the Maclaurin series for the function $f(x) = (x + 1)e^{2x}$ given that

$$f'(x) = (2x+3)e^{2x}, \quad f''(x) = (4x+8)e^{2x},$$

$$f'''(x) = (8x+20)e^{2x}$$

14. (3 points) Given that the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, are the following series convergent or divergent? Briefly justify.

(a)
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{1+1}$
(c) $\sum_{n=1}^{\infty} \frac{|a_n|}{n}$

ANSWERS

1. (a)
$$2\ln|x+2| + \frac{1}{x+2} - \ln|x| - \frac{1}{x} + C$$

(b) $-\frac{2\ln x+4}{\sqrt{x}} + C$
(c) $\frac{1}{10} \tan^5(x^2) + \frac{1}{3} \tan^3(x^2) + \frac{1}{2} \tan(x^2) + C$
(d) $\frac{x}{\sqrt{4x^2+1}} - \frac{4x^3}{3(4x^2+1)^{3/2}} + C = \frac{8x^3+3x}{3(4x^2+1)^{3/2}} + C$
(e) $\frac{1}{2}(x^2+1) \arctan x - \frac{1}{2}x \Big]_0^1 = \frac{1}{4}(\pi-2)$
(f) Letting $u = \ln(\sec x + \tan x)$, the integral equals

$$\frac{1}{2}u^2\Big]_0^{\ln(2+\sqrt{3})} = \frac{1}{2}\ln^2(2+\sqrt{3})$$

- **2.** (a) $\sqrt{2}$ (b) \sqrt{e} **3.** (a) Converges to $\frac{1}{3}\pi$ (b) Converges to $\frac{1}{2}\pi$ 4. $\int_{-3}^{0} (x^3 - 12x - x^2) \, dx + \int_{0}^{4} (x^2 - x^3 + 12x) \, dx$ 5. (a) $\int_0^1 2\pi x (3 - x^2 - 2x) dx$ (b) $\int_0^2 \pi \left[\left(\sqrt{3-y} + 1 \right)^2 - \left(\frac{1}{2}y + 1 \right)^2 \right] dy$ 6. $y = 4 + \ln(\sqrt{x^2 + 9} - 2)$
- 7. (a) $A(t) = 50(1 e^{-t/10})$ (b) $\lim_{t \to \infty} A(t) = 50 \text{ tons}$ **8.** (a) Since $-1 < \cos(n!) < 1$,

$$-\frac{1}{5n+1} < a_n < \frac{1}{5n+1}$$
 for all n_n

and so $\lim_{n \to \infty} a_n = 0$ by the Squeeze Theorem. (b) Since

$$\lim_{n \to \infty} \frac{e^n}{e^n + n} = 1 \neq 0$$

 $\{a_n\}$ oscillates between values close to 1 and values close to -1, i.e., $\{a_n\}$ diverges.

9. (a) $s_n = -\ln(2n+1)$

(b) $\lim_{n \to \infty} s_n = -\infty$, so the series diverges (to $-\infty$)

10. Let a_n be the *n*th term of the series in question. (a) Diverges by the test for divergence:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\sin(1/n)}{1/n} = \lim_{x \to 0} \frac{\sin x}{x} = 1 \neq 0$$

(b) Since

$$a_n = \frac{\sqrt{n}\sqrt{2+3/n}}{n^2(5-4/n)} = \frac{1}{n^{3/2}}\frac{\sqrt{2+3/n}}{5-4/n}$$

use the limit comparison test with the convergent *p*-series $\sum b_n = \sum 1/n^{3/2}$:

$$\frac{a_n}{b_n} = \frac{\sqrt{2+3/n}}{5-4/n} \longrightarrow \frac{\sqrt{2}}{5} \neq 0, \infty$$

and so $\sum a_n$ converges.

(c) $\sum (\ln n) / \sqrt{n}$ diverges by direct comparison with the divergent *p*-series $\sum 1/\sqrt{n}$ since

$$\frac{\ln n}{\sqrt{n}} > \frac{1}{\sqrt{n}} \quad \text{for all } n \ge 3$$

(or use the integral test). On the other hand, $\sum 1/6^n$ is a geometric series with r = 1/6, and so it is convergent because |r| < 1. The given series therefore diverges, since it is the difference of a divergent series and a convergent series.

11. Let a_n be the *n*th term of the series in question. (a) Converges absolutely by the root test:

$$|a_n|^{1/n} = \left(\frac{2^{n+1}}{n+2^n}\right)^{-1} = \frac{n+2^n}{2^{n+1}} = \frac{n}{2^{n+1}} + \frac{1}{2} \longrightarrow \frac{1}{2} < 1$$

(b) Converges conditionally. $\sum |a_n|$ diverges by the integral test: $f(x) = 1/(x\sqrt{\ln x})$ is continuous, positive and decreasing on $[2,\infty)$ and

$$\int_{2}^{\infty} f(x) \, dx = \lim_{t \to \infty} 2\sqrt{\ln x} \Big]_{2}^{t} = \infty$$

On the other hand, $1/(n\sqrt{\ln n}) \to 0$ as $n \to \infty$ and is decreasing, and so $\sum a_n$ converges by the alternating series test.

12. $R = \frac{1}{3}, [-\frac{4}{3}, -\frac{2}{3}]$

- **13.** $1+3x+4x^2+\frac{10}{3}x^3+\cdots$
- 14. (a) This series is absolutely convergent (and therefore convergent) because $\sum |(-1)^n a_n| = \sum |a_n|$ converges. (b) Since $\sum a_n$ is convergent, $\lim_{n\to\infty} a_n = 0$, and so

$$\lim_{n \to \infty} a_n^2 = 0 \implies \lim_{n \to \infty} \frac{1}{1 + a_n^2} = 1 \neq 0$$

so the given series diverges by the divergence test. (c) This series converges by direct comparison with the covergent series $\sum |a_n|$ since

$$\frac{|a_n|}{n} \leq |a_n| \qquad \text{for all } n \geq 1$$