(Marks)

(5) 1. Let
$$g(x) = \int_0^x \arctan\left(\frac{t^2}{2}\right) dt$$
.

- (a) Find the Maclaurin series for g(x).
- (b) Estimate g(0.5) accurate to within $\pm 5.0 \times 10^{-7}$
- (5) 2. Let $f(x) = \sqrt[3]{x}$
 - (a) Find the Taylor series for f(x) centered at x=27; express your answer in Σ notation.
 - (b) Find the third degree Taylor polynomial $T_3(x)$ for f(x) centered at x=27.
 - (c) Use Taylor's inequality to find an upper bound for the error when approximating f(25) by $T_3(x)$.
- (8) 3. Consider the following polar curves: $r_1 = -\cos\theta$ and $r_2 = 1 + \cos\theta$.
 - (a) Sketch the graphs on the same axes.
 - (b) Find all points of intersection (in Cartesian coordinates).
 - (c) Set-up, but do not evaluate, an integral expression to find the area enclosed by both curves.
 - (d) Set-up, but do not evaluate, an integral expression to find the length of the second curve, r_2 .
- 4. Given the curve C with parametric equations $x = t^2 2t$, $y = t^2 + 2t$: (8)
 - (a) Find the x and y-intercepts.
- (b) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. Simplify your answers.
- (c) Locate all points where the tangent is horizontal or vertical (identify which is which).
- (d) Sketch the curve for $-2 \le t \le 2$, and indicate with an arrow the direction of increasing t values (the orientation).
- (e) Set-up, but do not evaluate, an integral expression to determine the area between the curve and the y-axis in the second quadrant.
- (f) Set-up, but do not evaluate, an integral expression to determine the arc length of the curve on the interval $-2 \le t \le 2$.
- 5. Sketch and name each of the following surfaces in \mathbb{R}^3 . Show all relevant work. (9)

(a)
$$r^2 = 4\csc^2\theta$$

(b)
$$2r^2 - \rho^2 = 4$$

(b)
$$2r^2 - \rho^2 = 4$$
 (c) $z = 4\sqrt{4 - (x-2)^2 - (y-2)^2}$

- 6. A particle P moves along a curve $\mathbf{r}(t) = e^t \sin(t) \mathbf{i} + \sqrt{2} e^t \mathbf{j} + e^t \cos(t) \mathbf{k}$. (10)
 - (a) Calculate the length of the curve from t = 0 to t = 1.
 - (b) Find the unit tangent vector T(t), the unit normal vector N(t), the curvature $\kappa(t)$, and the tangential and normal components a_T, a_N of acceleration.

Hint:
$$(\sin t + \cos t)^2 + (\sin t - \cos t)^2 = 2$$
.

- 7. Let $z = f(x, y) = e^{(2x-3y)}$. (6)
 - (a) Find the total differential dz.
 - (b) Find the tangent plane to the surface z = f(x, y) at (0, 0).

(Marks)

- (c) Calculate the linear approximation to $\Delta z = f(Q) f(P)$, where P = (0,0) and Q = (0.05, -0.05), and so estimate f(0.05, -0.05).
- (3) 8. Let z = f(x, y) be a surface, and f(x, y) = c one of its level curves in the xy-plane. Assuming this curve is represented by the vector equation $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, use the chain rule to show that the gradient of f is always perpendicular to the level curve.
- (3) 9. Is the following function continuous at the origin? $f(x,y) = \begin{cases} \frac{3x^2 + y^3}{x^2 + 2y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$
- (4) 10. If f(u, v, w) is a differentiable function, and g(x, y, z) = f(x y, y z, z x), then show that $\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial g}{\partial z} = 0$.
- (4) 11. Given the (level) surface S: $f(x, y, z) = x y^3 2z^2 = 2$ and the point P(-4, -2, 1), find:
 - (a) the directional derivative of f at the point P in the direction of $\mathbf{v} = \langle 3, 6, -2 \rangle$; and
 - (b) the parametric equations of the tangent line at P to the curve of intersection of S and the plane given by 2x 3y z = -3.
- (5) 12. Find and classify the critical points of $f(x,y) = 4x 3x^3 2xy^2$.
- (6) 13. Find maximum and minimum of f(x, y, z) = 3x y 3z subject to two constraints x + y z = 0 and $x^2 + 2z^2 = 1$.
- (10) 14. Evaluate
 (a) $\int_{0}^{4} \int_{\sqrt{y}}^{2} \sqrt{4x^2 + 5y} \, dx \, dy$ (b) $\int_{0}^{4} \int_{0}^{\sqrt{16-x^2}} \arctan\left(\frac{y}{x}\right) \, dy \, dx$
- 15. Let \$\mathcal{R}\$ be the region above the sphere \$x^2 + y^2 + z^2 = 6\$ and below the paraboloid \$z = 4 x^2 y^2\$.
 Set up an appropriate integral to calculate the volume of \$\mathcal{R}\$.
 (You do not have to evaluate the integral.)
- 16. Let S be the region within the cylinder x² + y² = 2 between z = 0 and the cone z = √x² + y². Set up the integral of f(x, y, z) = x² + y² over S using
 (a) cylindrical coordinates;
 (b) spherical coordinates.

(You do not have to evaluate these integrals.)

(4) 17. Evaluate $\iint_{\mathcal{P}} e^{4x-y} dx dy$ where \mathcal{P} is the parallelogram determined by the points (0,0),(4,1),(3,3),(7,4).

Hint: Use the change of variable x = 4u + 3v and y = u + 3v.

Answers

1. (a)
$$g(x) = \int_0^x \arctan\left(\frac{t^2}{2}\right) dt = \sum_{n=1}^\infty (-1)^{n+1} \frac{x^{4n-1}}{2^{2n-1}(2n-1)(4n-1)}$$

(b) $0.02078683 < g(0.5) < 0.02078683 + 2.8 \times 10^{-7}$

2. (a)
$$\sqrt[3]{x} = 3 + \frac{1}{27}(x - 27) + \sum_{n=2}^{\infty} (-1)^{n+1} \frac{2 \cdot 5 \cdots (3n-4)}{3^{4n-1} n!} (x - 27)^n$$

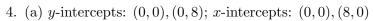
(b)
$$T_3(x) = 3 + \frac{1}{27}(x - 27) - \frac{2}{4374}(x - 27)^2 + \frac{5}{532441}(x - 27)^3$$

(c) $|R_3(25)| < 4.9 \times 10^{-6}$

3. (a): Graph at right

(b) Intersections:
$$(0,0), (-\frac{1}{4}, \frac{\sqrt{3}}{4}), (-\frac{1}{4}, -\frac{\sqrt{3}}{4})$$
 $r = -\cos\theta($
(c) $A = 2\left(\frac{1}{2}\int_{\pi/2}^{2\pi/3}\cos^2\theta \,d\theta + \frac{1}{2}\int_{2\pi/3}^{\pi}(1+\cos\theta)^2\,d\theta\right)$

(d)
$$s = \int_0^{2\pi} \sqrt{(1 + \cos \theta)^2 + \sin^2 \theta} \, d\theta$$



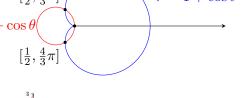
(b)
$$\frac{dy}{dx} = \frac{t+1}{t-1}$$
 and $\frac{d^2y}{dx^2} = \frac{-1}{(t-1)^3}$

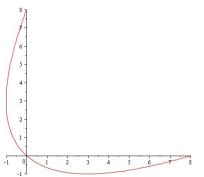
(c) HT at
$$(3,-1)$$
 @ $t = -1$; VT at $(-1,3)$ @ $t = 1$).

(d) Graph at right

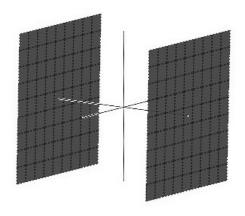
(e)
$$A = \int_0^2 (2t - t^2)(2t + 2) dt$$

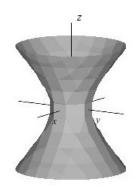
(f)
$$s = \int_{-2}^{2} \sqrt{(2t-2)^2 + (2t+2)^2} dt$$

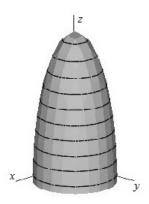




5. Three graphs: (a) a pair of planes (b) a hyperboloid of 1 sheet (c) the top half of an ellipsoid







6. (a)
$$s = \int_0^1 2e^t dt = 2(e-1)$$

(b)
$$T(t) = \frac{1}{2} \langle \sin(t) + \cos(t), \sqrt{2}, \cos(t) - \sin(t) \rangle; \quad N(t) = \frac{1}{\sqrt{2}} \langle \cos(t) - \sin(t), 0, -(\sin(t) + \cos(t)) \rangle.$$

 $\kappa = \frac{1}{2\sqrt{2}} e^{-t}; \quad a_T = 2 e^t; \quad a_N = \sqrt{2} e^t$

- 7. (a) $dz = e^{2x-3y}(2 dx 3 dy)$. (b) Plane: 2x 3y z + 1 = 0
 - (c) $\Delta z \sim dz = 0.25$, so $f(0.05, -0.05) \sim 1.25$
- 8. $\frac{dz}{dt} = 0$ on the level curve (since z is constant there); but (chain rule) $\frac{dz}{dt} = f_x x' + f_y y' = \nabla f \cdot \mathbf{r'}$, so $\nabla f \perp \mathbf{r'}$. In other words, ∇f is perpendicular to the (tangent to the) level curve.
- 9. The limit $\lim_{(x,y)\to(0,0)} \frac{3x^2+y^3}{x^2+2y^2}$ does not exist (along the path x=0 it is 0, but along the path y=0 it is 3), so the function cannot be continuous at (0,0).
- 10. $\frac{\partial g}{\partial x} = f_u f_w$, $\frac{\partial g}{\partial y} = f_v f_u$, $\frac{\partial g}{\partial x} = f_w f_v$, so $\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial g}{\partial z} = 0$.
- 11. (a) $f_{\boldsymbol{u}}(-4, -2, 1) = -61/7$. (b) Equations: $\{x = -4, y = -2 7t, z = 1 + 21t\}$
- 12. Two saddle points at $(0, \pm \sqrt{2})$; local min at $(-\frac{2}{3}, 0)$; local max at $(\frac{2}{3}, 0)$.
- 13. Max: $f = \frac{12}{\sqrt{6}} = 2\sqrt{6}$, at $(\frac{2}{\sqrt{6}}, -\frac{3}{\sqrt{6}}, -\frac{1}{\sqrt{6}})$; Min: $f = -\frac{12}{\sqrt{6}} = -2\sqrt{6}$, at $(-\frac{2}{\sqrt{6}}, \frac{3}{\sqrt{6}}, \frac{1}{\sqrt{6}})$.
- 14. (a) $\int_0^2 \int_0^{x^2} \sqrt{4x^2 + 5y} \, dy \, dx = 152/15$ (b) $\int_0^{\pi/2} \theta \, d\theta \int_0^4 r \, dr = \pi^2$
- 15. $\int_0^{2\pi} \int_0^{\sqrt{2}} \int_{\sqrt{6-r^2}}^{4-r^2} r \, dz \, dr \, d\theta$
- 16. (a) $\int_0^{2\pi} \int_0^{\sqrt{2}} \int_0^r r^3 dz dr d\theta$ (b) $\int_0^{2\pi} \int_{\pi/4}^{\pi/2} \int_0^{\sqrt{2} \csc \varphi} \rho^4 \sin^3 \varphi d\rho d\varphi d\theta$
- 17. $\iint_{\mathcal{P}} e^{4x-y} dx dy = 9 \int_{0}^{1} e^{15u} du \int_{0}^{1} e^{9v} dv = \frac{1}{15} (e^{15} 1)(e^{9} 1)$