- 1. (5 points) (a) Find the exact value of $\cos\left(\tan^{-1}\left(\frac{3}{2x}\right)\right)$ (b) Use your answer to part (a) to evaluate $\int \cos\left(\tan^{-1}\left(\frac{3}{2x}\right)\right) dx$
- 2. (25 points) Evaluate the integrals

(a)
$$\int \frac{11x^2 - 14x + 8}{(2x - 1)(x^2 + 1)} dx$$

(b)
$$\int_0^{\frac{1}{4}} \frac{\arccos(2x)}{\sqrt{1 - 4x^2}} dx$$

(c)
$$\int x^5 \cos(x^2) dx$$

(d)
$$\int \frac{\sin^3(5x)}{\cos(5x)} dx$$

(e)
$$\int \frac{\sqrt{1 - x^2}}{x^4} dx$$

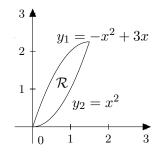
3. (10 points) Evaluate the improper integrals.

(a)
$$\int_{5}^{\infty} \frac{1}{x^2 - 10x + 29} dx$$

(b) $\int_{0}^{\frac{\pi}{4}} \frac{\sec^2 x}{\sqrt{\tan x}} dx$

- 4. (9 points) Evaluate the limits.
 - (a) $\lim_{x \to \frac{\pi}{6}} \sec(3x) \sin\left(x \frac{\pi}{6}\right)$ (b) $\lim_{x \to e^{-}} [\ln x]^{\frac{2}{1 - \ln x}}$ (c) $\lim_{x \to 0} \frac{\arctan(2x)}{\arctan(5x)}$
- 5. (5 points) Find the area between $y_1 = \sqrt{x+1}$ and $y_2 = \frac{x+1}{2}$
- 6. (4 points) Let \mathcal{R} be the region bounded by $y_1 = -x^2 + 3x$ and $y_2 = x^2$. Set up, but do not evaluate the integral for the volume obtained by rotating the region \mathcal{R} about the following:

(a) the
$$y$$
-axis



- (b) the line y = -1
- 7. (4 points) Find the length of the curve $y = 2 \ln \left(\cos \frac{1}{2} x \right)$ from $\frac{\pi}{3} \le x \le \frac{\pi}{2}$
- 8. (4 points) Solve the differential equation: $x^2y' + 2xy = 3x$, given y(1) = 1 and $x \neq 0$. Express y as a function of x.
- 9. (2 points) Determine if the sequence $a_n = \frac{4}{9^n} + 3 \arctan(\ln(n^2))$ converges or diverges. If it converges, find its limit.
- 10. (12 points) Determine whether each of the following series converges or diverges. State the test used and justify your answers.

(a)
$$\sum_{n=1}^{\infty} \frac{e^n}{1+e^{2n}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1+n}{n2^n}$$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{2n+1}{3n+1}\right)^n$$

(d)
$$\sum_{n=1}^{\infty} \left(1+\frac{7}{4^n}\right)$$

11. (6 points) Determine whether each of the following series is absolutely convergent, conditionally convergent or divergent. Justify your answer.

(a)
$$\sum_{n=2}^{\infty} \frac{\cos(n\pi)}{\ln(4n)}$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^n n^2 5^n}{(2n)!}$

12. (5 points) Determine whether each of the following series converges or diverges. If it converges find the sum.

(a)
$$\sum_{n=1}^{\infty} \left[\arccos\left(\frac{1}{n+1}\right) - \arccos\left(\frac{1}{n+2}\right) \right]$$

(b) $\sum_{n=1}^{\infty} \frac{2^{n-1}}{5^n}$

13. (2 points) Suppose that $\sum_{n=0}^{\infty} c_n x^n$ converges when x = -5 and diverges when x = 7. What can be said about the convergence or divergence of the following series? Justify your answers.

(a)
$$\sum_{n=0}^{\infty} c_n (-4)^n$$

(b)
$$\sum_{n=0}^{\infty} c_n (5)^n$$

(c) $\sum_{n=0}^{\infty} c_n$ (d) $\sum_{n=0}^{\infty} c_n (-8)^n$

14. (3 points) Find the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n 3^{2n} (x-2)^n}{4n+1}$

- **15.** (4 points) Let $f(x) = \frac{1}{2-x}$
 - (a) Write the first five nonzero terms of the Taylor series for f(x) centered at a = 5.
 - (b) Find a formula for the n^{th} term of the series, and express the series in sigma notation.