(Marks)

1. Evaluate the following integrals.

(5) (a)
$$\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{6}{\sqrt{1-x^2}} dx$$

(5) (b)
$$\int e^{-3x} \cos(2x) \, dx$$

(5) (c)
$$\int_{1}^{\sqrt{e}} \frac{1}{x(\ln x - 1)} dx$$

(5) (d)
$$\int \frac{e^{3x}}{9 + e^{2x}} dx$$

(5) (e)
$$\int \sqrt{\tan x} \sec^4 x \, dx$$

(5) (f)
$$\int \frac{x^2 + 3x + 1}{(2x^2 + 1)(x - 3)} dx$$

(5) (g)
$$\int \frac{\sqrt{x^2 - 9}}{x^2} dx$$

2. Evaluate the following limits.

(3) (a)
$$\lim_{x \to \pi} \frac{1 + \cos x}{(x - \pi)^2}$$

(3) (b)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x} + \frac{1}{x^2} \right)^x$$

3. Evaluate the following improper integrals.

(4) (a)
$$\int_{4}^{\infty} \frac{2}{x^2 - 2x} dx$$

(4) (b)
$$\int_0^2 \frac{1}{\sqrt[3]{1-x}} dx$$

- (4) 4. Find the value a such that the line x = a divides the region bounded by $y = e^x$ and the x-axis from x = 0 to $x = \ln 5$ into two regions of equal area.
- (6) 5. Let \mathcal{R} be the region bounded by the curves $f(x) = x + \frac{16}{x}$ and g(x) = 10. Set up, but **do not evaluate** the integral for the volume obtained by rotating the region \mathcal{R} about the following:
 - (a) The x-axis.
 - (b) The line x = 10.
- (4) 6. Find the length of the curve $y = \frac{2}{3}(x^2 + 1)^{3/2}$ from x = 0 to x = 3.
- (4) 7. Solve the differential equation $y' = xe^{2x^2+y}$ with y(0) = 0. Express y as a function of x.
 - 8. Determine whether each sequence $\{a_n\}$ converges or diverges. If a sequence converges, find what it converges to. Justify your answers.

(2) (a)
$$a_n = (-1)^n \frac{2^n}{2^n + n^2}$$

(3) (b)
$$a_n = \frac{5^n}{n!}$$

(Marks)

- (2) 9. (a) If the sequence $\{a_n\}$ converges, does the series $\sum a_n$ converge? Briefly justify.
 - (b) If the series $\sum a_n$ converges, does the sequence $\{a_n\}$ converge? Briefly justify.
- (3) 10. Find the sum of the series $\sum_{n=1}^{\infty} \left[\left(1 + \frac{1}{n} \right)^n \left(1 + \frac{1}{n+1} \right)^{n+1} \right].$
 - 11. Determine whether the following series are convergent or divergent.

(3) (a)
$$\sum_{n=1}^{\infty} \ln \left(\frac{2n^2 + 3}{n^2 + 5} \right)$$

(3) (b)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

(3) (c)
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n\sqrt{n}}$$

12. Determine whether each of the following series is absolutely convergent, conditionally convergent, or divergent.

(3) (a)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{4n-1}{25n+5} \right)^{\frac{n}{2}}$$

(3) (b)
$$\sum_{n=2}^{\infty} (-1)^n \frac{\arctan n}{\sqrt{n^2 + 1}}$$

- (4) 13. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(n!)^2 (2x-1)^n}{(2n)!}$
- (4) 14. Find the Taylor series for $f(x) = \sqrt{x}$ centered at 1. What is its radius of convergence?

Answers

1.(a)
$$\pi$$
 (b) $\frac{e^{-3x}}{13}(2\sin(2x) - 3\cos(2x)) + C$ (c) $-\ln 2$ (d) $e^x - 3\arctan(\frac{e^x}{3}) + C$

(e)
$$\frac{2}{3} \tan^{3/2} x + \frac{2}{7} \tan^{7/2} x + C$$
 (f) $-\frac{1}{4} \ln(2x^2 + 1) + \ln|x - 3| + C$ (g) $\ln\left|\frac{x}{3} + \frac{\sqrt{x^2 - 9}}{3}\right| - \frac{\sqrt{x^2 - 9}}{x} + C$

2.(a)
$$\frac{1}{2}$$
 (b) e^2 3.(a) $\ln 2$ (b) 0 4. $a = \ln 3$ 5.(a) $\pi \int_2^8 100 - \left(x + \frac{16}{x}\right)^2 dx$

(b)
$$2\pi \int_{2}^{8} (10 - x) \left(10 - x - \frac{16}{x} \right) dx$$
 6. 21 7. $y = \ln \left(\frac{4}{5 - e^{2x^2}} \right)$ 8.(a) D (b) C \rightarrow 0

9.(a) No (b) Yes 10.
$$2 - e$$
 11.(a) D (b) C (c) C 12.(a) AC (b) CC

13.
$$-\frac{3}{2} < x < \frac{5}{2}$$
 14. $1 + \frac{1}{2}(x-1) + \sum_{n=2}^{\infty} (-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-3)}{2^n n!} (x-1)^n$ with $R = 1$