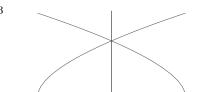
(Marks)

(6) 1. Let
$$f(x) = \int_0^x t \cos \sqrt{t} \, dt$$
:

- (a) find a power series representation for f(x);
- (b) use this series to approximate $f(x) = \int_0^{1/2} t \cos \sqrt{t} \, dt$ correctly to 4 decimal places.
- (6) 2. Find the power series representation for each of the following functions, and state the radius of convergence.
 - (a) $f(x) = \frac{1}{4-3x}$, centered at x = 2.
 - (b) $f(x) = \frac{3}{2 + x x^2}$, centered at x = 0.
- (8) 3. Let $f(x) = \sqrt[3]{8+x}$:
 - (a) use the Binomial theorem to find the first 5 terms of the Maclaurin series for f(x), and its radius of convergence;
 - (b) approximate $\sqrt[3]{8.2}$ correctly to 4 decimal places.
- (8) 4. Let \mathcal{C} be the plane curve defined by parametric equations $\begin{cases} x = 3t t^3 \\ y = 3t^2 \end{cases}$



- (a) Show the orientation of C.
- (b) Find and simplify $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
- (c) At what points does C have a vertical tangent line?
- (d) Set up (but do not evaluate) the integral needed to find the area of the region enclosed by the loop.
- (6) 5. (a) Sketch the graph of $r = 2\sin(3\theta)$.
 - (b) Find the area of the region enclosed by the curve.
 - (c) Set up (but do not evaluate) the integral needed to find the length of one loop of the curve.
- (10) 6. Let C be the space curve defined by the vector equation $\mathbf{r}(t) = \langle e^t, e^t \sin t, e^t \cos t \rangle$.
 - (a) Find the equation of a quadric surface on which $\mathcal C$ lies. Sketch both the surface and the curve.
 - (b) Find the unit tangent vector T and the unit normal vector N.
 - (c) Find the length of $\mathcal C$ on the interval $0 \le t \le 1$.
 - (d) Find the curvature κ of \mathcal{C} .
 - (e) Find the parametric equations of the tangent line to \mathcal{C} at the point where t=0.
- (9) 7. Sketch and describe the following. Show all your work.
 - (a) The surface $f(x,y) = \sqrt{x^2 + 2y^2 + 1}$.
 - (b) The level curve of $z = \frac{y}{x^2 + y^2}$ corresponding to $z = \frac{1}{4}$.
 - (c) The surface $\rho = \csc \varphi \cot \varphi$.

(Marks)

- 8. Let r be a three-times-differentiable function of t. Simplify: $[r \cdot (r' \times r'')]'$. (2)
- (4)9. Find the limit (or if appropriate, show that it does not exist):

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$$

(b)
$$\lim_{(x,y)\to(0,0)} (x^2+y^2) \ln(x^2+y^2)$$

- 10. Show that if f(t) is differentiable, then z = f(x/y) is a solution of the partial differentiable equation (3) $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0.$
- 11. Let C be the curve formed by the intersection of the level surface $x^2y + yz + z^2 + 1 = 0$ and the plane (3)x+y+z=1. Let $P_0(1,-1,1)$ be a point on \mathcal{C} . Find a tangent vector to \mathcal{C} at P_0 .
- 12. Let z = f(x, y) be implicitly defined by $\sin(xy) + xz^4 + y^3z = 2$, and let $P_0(0, 1, 2)$ be a point on this (6) surface.
 - (a) Find the equation of the tangent plane to the surface at P_0 .
 - (b) Find $\nabla f(0,1)$.
 - (c) Find an approximation of f(-0.05, 1.10).
- 13. Find and classify the critical points of $f(x,y) = y^2 + x^2y + x^2 2y$. (5)
- 14. Use Lagrange Multipliers to find the points on the sphere $x^2 + y^2 + z^2 = 3$ where the maximum and (5)minimum values of the product xyz are found.
- 15. Evaluate: (8)

(a)
$$\int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \ln(x^2 + y^2 + 1) \, dx \, dy$$
 (b) $\int_{0}^{4} \int_{0}^{1} \int_{2y}^{2} \frac{\cos(x^2)}{\sqrt{z}} \, dx \, dy \, dz$

(b)
$$\int_0^4 \int_0^1 \int_{2u}^2 \frac{\cos(x^2)}{\sqrt{z}} dx dy dz$$

- 16. Sketch the solid region S bounded below by $z = \sqrt{x^2 + y^2}$, and bounded above by $\rho = 2\cos\phi$. (5)Find the volume of S.
- 17. Sketch the solid region S bounded below by the plane z=0, laterally by the surface $x^2+(y-1)^2=1$, (6) and above by the surface $z = x^2 + y^2$.

Set up the triple integrals representing the volume of S in

- (a) cartesian coordinates
- (b) cylindrical coordinates

1. (a)
$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+2}}{(n+2)(2n)!}$$

(b)
$$f(\frac{1}{2}) \simeq \frac{1}{8} - \frac{1}{48} + \frac{1}{1536} \simeq 0.1048$$

2. (a)
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 3^n (x-2)^n}{2^{n+1}}$$
, and $R = \frac{2}{3}$

(b)
$$f(x) = \sum_{n=0}^{\infty} \left(\frac{1}{2^{n+1}} + (-1)^n \right) x^n$$
, and $R = 1$

3. (a)
$$f(x) = 2 + \frac{x}{12} - \frac{x^2}{288} + \frac{5x^3}{20736} - \frac{5x^4}{248832} + \cdots$$
 and $R = 8$

(b)
$$f(0.2) = 2 + \frac{0.2}{12} - \frac{(0.2)^2}{288} \approx 2.0165$$

with absolute value of error less than $\frac{5(0.2)^3}{20736} = 0.19 \times 10^{-5}$

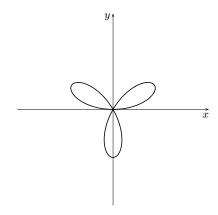
4. (a) Counterclockwise orientation

(b)
$$\frac{dy}{dx} = \frac{2t}{1-t^2}$$
 and $\frac{d^2y}{dx^2} = \frac{2(1+t^2)}{3(1-t^2)^3}$

(c) Vertical tangents at $(\pm 2, 3)$

(d)
$$A = 2 \int_0^{\sqrt{3}} x dy = 2 \int_0^{\sqrt{3}} (3t - t^3)(6t) dt = 12 \int_0^{\sqrt{3}} (3t^2 - t^4) dt$$

5. (a)



(b)
$$A = \int_0^{\pi} \frac{1}{2} (2\sin(3\theta))^2 d\theta = \pi$$

(c)
$$\mathcal{L} = \int_0^{\pi/3} \sqrt{4 + 32\cos^2(3\theta)} d\theta = 2 \int_0^{\pi/3} \sqrt{1 + 8\cos^2(3\theta)} d\theta$$

6. (a) The curve lies on the cone $x^2 = y^2 + z^2$. Note that $x = e^t$ so x > 0 implying that the curve spirals around $x = \sqrt{y^2 + z^2}$, the upper nappe of the cone.

(b)
$$\mathbf{T}(t) = \frac{1}{\sqrt{3}} \langle 1, \sin t + \cos t, \cos t - \sin t \rangle$$

and
$$\mathbf{N}(t) = \frac{1}{\sqrt{2}} \langle 0, \cos t - \sin t, -\sin t - \cos t \rangle$$

(c)
$$\mathcal{L} = \sqrt{3}(e-1)$$

(d)
$$\kappa = \frac{\sqrt{2}}{3e^t}$$

(e)
$$x = 1 + t$$
, $y = t$, $z = 1 + t$ where $t \in \mathbb{R}$

- 7. (a) $-x^2 2y^2 + z^2 = 1$ and z > 0, hyperboloid of two sheets (top part only)
 - (b) $x^2 + (y-2)^2 = 4$, circle of radius 2 and center (0,2)
 - (c) $z = r^2$ or $z = x^2 + y^2$, circular paraboloid

8.

$$[\mathbf{r} \cdot (\mathbf{r}' \times \mathbf{r}'')]' = \mathbf{r}' \cdot (\mathbf{r}' \times \mathbf{r}'') + \mathbf{r} \cdot (\mathbf{r}' \times \mathbf{r}'')'$$
$$= 0 + \mathbf{r} \cdot (\mathbf{r}'' \times \mathbf{r}'' + \mathbf{r}' \times \mathbf{r}''')$$
$$= \mathbf{r} \cdot (\mathbf{r}' \times \mathbf{r}''')$$

- 9. (a) The limit does not exist
 - (b) Use polar coordinates to show the limit is zero
- 10. Show that $\frac{\partial z}{\partial x} = \frac{df}{dt} \left(\frac{1}{y} \right)$ and $\frac{\partial z}{\partial y} = \frac{df}{dt} \left(\frac{-x}{y^2} \right)$.
- 11. Let $F(x,y,z) = x^2y + yz + z^2 + 1$ and $\mathbf{n} = \langle 1,1,1 \rangle$. Then $\mathbf{n} \times \nabla F(P_0)$ gives $\mathbf{v} = \langle -1,-3,4 \rangle$
- 12. (a) 17x + 6y + z = 8
 - (b) $\nabla f(0,1) = \langle -17, -6 \rangle$
 - (c) $f(-0.05, 1.1) \simeq f(0, 1) + df|_{(0.1)} = 2.25$
- 13. There is a local minimum at (0,1) (f(0,1)=-1). The points $(\pm 2,-1)$ are saddle points.
- 14. The minimum value is -1 occurring at (-1, -1, -1), (-1, 1, 1), (1, -1, 1) and (1, 1, -1). The maximum value is 1 occurring at (-1, -1, 1), (-1, 1, -1), (1, -1, -1) and (1, 1, 1).
- 15. (a) $I = \int_0^{2\pi} \int_0^1 \ln(r^2 + 1) r dr d\theta = \pi (2 \ln 2 1)$

(b)
$$I = \int_0^4 \int_0^2 \int_0^{\frac{x}{2}} \frac{\cos(x^2)}{\sqrt{z}} dy dx dz = \sin 4$$

16.
$$V = \int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{2\cos\phi} \rho^2 \sin\phi d\rho d\phi d\theta = \pi$$

17. (a)
$$V = \int_0^2 \int_{-\sqrt{2y-y^2}}^{\sqrt{2y-y^2}} \int_0^{x^2+y^2} dz dx dy$$

(b)
$$V = \int_0^\pi \int_0^{2\sin\theta} \int_0^{r^2} r dz dr d\theta$$