(3)

1. Differentiate with respect to x and simplify your answer:

$$y = \sin^{-1}\left(\sqrt{1-x^2}\right) + \cot^{-1}\left(\frac{1}{x}\right) - \sec^{-1}\left(5\right), \quad 0 < x \le 1$$

- 2. Evaluate the following limits: (9)
 - a) $\lim_{x \to 1^+} \left(\frac{x}{x-1} \frac{1}{\ln x} \right)$
 - b) $\lim_{x \to 0^+} \frac{3x}{\arctan 3x}$
 - c) $\lim_{x \to \frac{\pi}{2}} (\tan x)^{\cos x}$
- 3. Evaluate the following integrals:

a)
$$\int \frac{(x+1)}{\sqrt{2x+1}} dx$$
 (4)

b)
$$\int_{0}^{\frac{\pi}{4}} (1 + \tan x)^{3} \sec^{2} x \, dx$$
 (4)

c)
$$\int x^{\frac{5}{2}} \ln x \, dx \tag{4}$$

$$d) \int \frac{\sec^4 x}{\tan^2 x} dx \tag{4}$$

e)
$$\int \frac{x^2 + x}{x^4 - 1} dx$$
 (4)

$$f) \int \frac{x^2}{\sqrt{1 - 4x^2}} dx \tag{4}$$

4. Determine whether the following improper integrals converge or diverge. If an integral converges, find its exact value.

a)
$$\int_{0}^{9} \frac{1}{\sqrt[3]{1-x}} dx$$
 (4)

b)
$$\int_{-\infty}^{0} \frac{1}{1 + 4x^2} dx$$
 (3)

5. Solve the differential equation. Provide a solution in a) implicit form and b) explicit form. (4)

$$y'\sqrt{1-x^2} = xy; \quad y(0) = 1, \ y > 0$$

- 6. Compute the exact area of the region bounded by y = x and $y = \ln x$ on the interval $\left[1, e^2\right]$
- 7. Let R be the region bounded by $x = -y^2 2y$ and the y-axis. Set up, but DO NOT EVALUATE, integrals corresponding to the volume of the solid obtained by rotating R around
 - a) the x axis b) the y axis c) the line y = 5
- 8. Determine whether the sequence converges or diverges. If it converges, to what does it converge? (3)

a)
$$\left\{ \frac{3^n}{n!} \right\}$$

b) $\left\{ n2^{\frac{1}{n}} \right\}$

c)
$$\left\{\frac{1+\cos n}{\sqrt{n}}\right\}$$

- 9. Let $\sum_{n=1}^{\infty} a_n$ be a series whose n^{th} partial sum is given by $S_n = \frac{2n+1}{3n^2 n}$ (3)
 - a) Determine whether the series converges or diverges. If it converges, find its sum.
 - b) Find a_3
- 10. Provide an example of each of the following:

a) A sequence
$$\{a_n\}$$
 such that $\lim_{n\to\infty} a_n = 0$, but $\sum_{n=1}^{\infty} a_n$ diverges

- b) A series $\sum_{n=1}^{\infty} (a_n + b_n)$ which converges, but neither $\sum_{n=1}^{\infty} a_n$ nor $\sum_{n=1}^{\infty} b_n$ converges.
- c) function f such that $\lim_{x\to\infty} f(x)$ does not exist, but $\lim_{n\to\infty} f(n)$ exists.

(3)

(5)

11. Suppose
$$f$$
 and g are both decreasing functions such that $0 < f(x) < g(x)$ for all $x \ge 1$ and that

$$\sum_{n=0}^{\infty} f(n)$$
 converges. Fill in each blank with the appropriate word (must, might, cannot)

a) the series
$$\sum_{n=1}^{\infty} f(n)$$
 ______converge

b) the integral
$$\int_{1}^{\infty} f(x)dx$$
 ______converge

c) the series
$$\sum_{n=9}^{\infty} g(n)$$
 ______converge

d) the series
$$\sum_{n=0}^{\infty} \frac{1}{f(n)}$$
 ______ converge

e) if
$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = 5^8$$
, then $\sum_{n=9}^{\infty} g(n)$ converge

12. Determine whether the series converges or diverges. Justify your answers.

a)
$$\sum_{n=1}^{\infty} \frac{\arctan(n)}{\sqrt{n+1}}$$
 (3)

b)
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{(n+1)^2} \cos\left(\frac{\pi}{4n}\right)$$
 (3)

c)
$$\sum_{n=1}^{\infty} \left(\frac{3n}{n^3 + 1} - \frac{2^{n-1}}{3^n} \right)$$
 (3)

13. Determine whether the series is absolutely convergent, conditionally convergent, or divergent:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n n^2}{(2n)!}$$
 (3)

b)
$$\sum_{n=1}^{\infty} \frac{\cos[(n+1)\pi]}{n^{\frac{1}{3}}}$$
 (2)

c)
$$\sum_{n=1}^{\infty} (-1)^n 4^n \left(2 - \frac{1}{n}\right)^{2n}$$
 (2)

continued

$$d) \sum_{n=1}^{\infty} \frac{\sin(2^n)}{(n+1)(n+2)}$$

14. Find the radius and interval of convergence for the power series
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^n}{n2^n}$$
 (4)

15. Write the Maclaurin series for
$$f(x) = e^{-2x}$$
 in sigma notation with a formula for the n^{th} term. (2)

16. a) Write the first 5 terms of the Taylor series for
$$f(x) = (2x-1)^{-2}$$
 with center 1. (6)

b) Write the series in sigma notation with a formula for the n^{th} term.

Answers

1.
$$\frac{1}{x^2+1} - \frac{1}{\sqrt{1-x^2}}$$
 2. $\frac{1}{2}$, 1, 1 3. $\sqrt{2x+1}(x-1) + C$, $\frac{15}{4}$, $\frac{2}{7}x^{\frac{7}{2}}\left(\ln x - \frac{2}{7}\right) + C$
 $-\cot x + \tan x + C$, $\frac{1}{2}\left[\ln |x-1| - \frac{1}{2}\ln(x^2+1) + \tan^{-1}x\right] + C$, $\frac{1}{16}\sin^{-1}(2x) - \frac{1}{8}x\sqrt{1-4x^2} + C$
4. $-\frac{9}{2}$, $-\frac{\pi}{4}$, 5. $\ln y = 1 - \sqrt{1-x^2}$, $y = e^{1-\sqrt{1-x^2}}$ 6. $\frac{1}{2}e^4 - e^2 - \frac{3}{2}$
7. Shell: $\int_{-2}^{0} -2\pi y(y^2+2y) dy$ Ring: $\int_{-2}^{0} \pi(y^2+2y)^2 dy$ Shell: $\int_{-2}^{0} -(y+5)(y^2+2y) dy$

8. C to 0 by the Sq. theorem, D, C to 0 by the Sq. theorem

9. C to 0, its sum is zero,
$$a_3 = -\frac{5}{24}$$
 10. $\sum \frac{1}{n^p}$, $0 , $\sum \frac{1}{n}$ and $\sum -\frac{1}{n}$, $f(n) = \cos 2n\pi$$

11. m ust, must, might, cannot, must

12. D by LCT with
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$$
 which D, D by NTT for D, C: sum of covergent series

13. AC by the Ratio Test, Not AC, but C by the AST, hence CC, D by the NTT for D OR D by the Ratio Test

AC by the Comparison Test of
$$\sum_{n=1}^{\infty} |a_n|$$
 with $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$ which C

14. Rad. is 2,Interval of C is
$$(0,4]$$
 15. $e^{-2x} = \sum_{0}^{\infty} \frac{(-1)^n 2^n x^n}{n!}$ **16.** $(2x-1)^{-2} = \sum_{0}^{\infty} (-1)^n (n+1) 2^n (x-1)^n$