(Marks)

- (6) 1. For the function $f(x) = x \ln(x)$:
 - (a) find the 4th degree Taylor polynomial $T_4(x)$ around x = 1.
 - (b) Use Taylor's Inequality (or Lagrange's Remainder) to estimate the error in using $T_4(x)$ to approximate f(x) on the interval [0.5, 1.5].
- (4) 2. Find the Maclaurin series for the function $f(x) = \frac{1}{\sqrt{1+x^3}}$. What is its radius of convergence?
- (8) 3. Let $g(x) = \int_0^x \frac{t^2 dt}{1 + t^4}$
 - (a) Find the Maclaurin series for g(x), and its radius of convergence;
 - (b) approximate $\int_0^{1/2} \frac{t^2 dt}{1+t^4}$ within an error of $\pm 10^{-4}$ (and justify your answer).
 - (c) Find $g^{(7)}(0)$.
- (6) 4. Sketch (on the same axes) the graphs of $r = 3 \sin \theta$ and $r = 1 + \sin \theta$.
 - (a) Find all points of intersection.
 - (b) Set up (but do not evaluate) the integrals needed to find
 - i. the area of the region common to both (i.e. inside) $r = 3\sin\theta$ and $r = 1 + \sin\theta$, and
 - ii. the perimeter (length) of $r = 1 + \sin \theta$.
- 5. Suppose that a plane curve C given by parametric equations in t passes through the point (0,2) at t=1, and satisfies $\frac{dx}{dt}=\frac{2}{t}$ and $\frac{dy}{dt}=1-\frac{1}{t^2}$.
 - (a) Find the parametric equations for C (i.e. for x and y).
 - (b) Find the Cartesian equation for \mathcal{C} by eliminating the parameter t.
 - (c) Find the length of C from t = 1 to t = 3.
- (10) 6. A space curve C is defined by the vector equation $\mathbf{r}(t) = \langle t^3, 3t^2, 6t \rangle$.
 - (a) Compute the velocity v, acceleration a, and speed v of a point moving along C.
 - (b) Find the tangential and normal components of acceleration a_T, a_N , the unit tangent vector T and the unit normal vector N.

Simplify your answers.

- (9) 7. Identify and sketch the following. Show all your work.
 - (a) The surface $z^2 = r^2$.
 - (b) The surface $\rho = 4\cos\varphi$.
 - (c) The graph of the function $z = \sqrt{4 x^2 + y^2}$.
- (9) 8. (a) Calculate $f_{xy}(x,y)$ for the function $f(x,y) = x e^{x^2 y^2}$.
 - (b) Let z = f(x y, y x). Show that $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$
 - (c) Given z = f(x, y) is implicitly defined by the equation $z = e^x \sin(y + z)$, find $\frac{\partial z}{\partial x}$.

(Marks)

- 9. Let S be the level surface $f(x, y, z) = x y^3 2z^2 = 2$, and $P_0(-4, -2, 1)$ a point on S. Find: (8)
 - (a) the equation of the tangent plane to S at P_0 ;
 - (b) the derivative of f at P_0 in the direction $\mathbf{v} = \langle 3, 6, -2 \rangle$;
 - (c) the direction and value of the maximal rate of increase of f at P_0 ;
 - (d) the parametric equations of the tangent line at P_0 to the curve of intersection of \mathcal{S} and the plane 2x - 3y - z = -3.
- (4)10. Given $z = f(x, y) = \ln(2y - x)$:
 - (a) find the total differential dz;
 - (b) use dz to find an approximate value of f(3.1, 1.98).
- 11. Find and classify all local extrema of $f(x,y) = 4xy x^4 y^4$. (5)
- (6) 12. Use Lagrange Multipliers to determine the dimensions of a rectangular box with no top, having a volume of 32 cubic meters and requiring the least amount of material for construction.
- 13. Evaluate (change the coordinates or the order of integration as appropriate): (12)

 - (a) $\int_0^8 \int_{\sqrt[3]{y}}^2 e^{x^4} dx dy$ (b) $\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} dy dx$
 - (c) $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{0}^{\sqrt{4-x^2-y^2}} \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx.$
- 14. Sketch the solid region S above the xy plane and inside both the hemisphere $z = \sqrt{25 x^2 y^2}$ and (6) the cylinder $x^2 + y^2 = 9$.

Set up (but do not evaluate) triple integrals representing the volume of S in

- (a) cartesian coordinates
- (b) cylindrical coordinates
- (c) spherical coordinates