- 1. Evaluate $\frac{d}{dx} \left\{ \sin \left(\arccos \sqrt{1-x^2} \right) \right\}$, and simplify your answer.
- 2. Evaluate the following integrals.

a.
$$\int_{1}^{\sqrt{2}} \frac{4 + 2\sqrt{x^2 - 1}}{x\sqrt{x^2 - 1}} dx$$
 b.
$$\int_{1}^{5} \frac{x + 2}{\sqrt{2x - 1}} dx$$
 c.
$$\int e^{-2x} \cos 6x dx$$
 d.
$$\int \sqrt{t + 1} \log \sqrt{t + 1} dt$$

e.
$$\int_0^{\frac{1}{2}\pi} \sin^3 x \cos^3 x \, dx$$
 f. $\int \frac{dx}{x^2 \sqrt{x^2 - 36}}$ g. $\int \frac{x+4}{x(x^2+2)} \, dx$

3. Evaluate the following improper integrals.

a.
$$\int_{2}^{\infty} \frac{1}{1-x^2} dx$$
 b. $\int_{0}^{2} \frac{x}{x^2-4} dx$

4. Evaluate the following limits.

a.
$$\lim_{x \to 0^+} \frac{(\log x)^2}{1 + x^{-1}}$$
 b. $\lim_{x \to 0} (\sec x)^{\cot^2 x}$ c. $\lim_{x \to \infty} \left\{ \frac{x^2 + 2}{x - 3} - \frac{(x - 2)^3}{x^2 + 1} \right\}$

5. Find the area of the region (in quadrant I) bounded by the graphs of

$$y = \frac{2}{x}$$
, $y = \frac{3x}{x^2 + 2}$ and $x = 1$.

Give the exact answer in simplified form only: no decimals.

6. Let \mathcal{R} be the region bounded by the graphs of

$$y = \frac{x^2}{4}$$
, $y = x^3 - 3x + 3$, $x = -2$ and $x = 2$.

a. Set up, *but do not evaluate*, an integral that represents the volume of the solid generated by revolving ${\mathscr R}$ about the x-axis.

b. Find the volume of the solid generated by revolving $\mathscr R$ about the line x=3. Give the exact answer in simplified form only: no decimals.

7. Find a solution to the differential equation

$$y' = \frac{\sqrt{1-y^2}}{1+x^2}; \quad y(1) = 0.$$

8. Let $\sum_{n=1}^{\infty} a_n$ be a series whose n^{th} partial sum is given by $s_n = \frac{2n+1}{n+2}$

a. Evaluate
$$\sum_{n=1}^{\infty} a_n$$
. b. Find a

9. What can you say about the convergence of each series based only on the limit of its general term?

a.
$$\sum_{n=1}^{\infty} \frac{\cos n}{n}$$
 b.
$$\frac{1}{2} + 1 + \frac{1}{4} + 1 + \frac{1}{8} + 1 + \frac{1}{16} + 1 + \cdots$$

10. Determine whether each of the following series converges or diverges; if it converges, find the sum. Justify your answers.

a.
$$\sum_{n=1}^{\infty} \frac{5(-4)^{n+2}}{3^{2n+1}}$$
 b.
$$\sum_{n=1}^{\infty} \log \frac{2n-1}{2n+1}$$

11. Determine whether each of the following series converges or diverges. State the tests you use and verify that the conditions for using them are satisfied.

$$\text{a. } \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} \qquad \text{b. } \sum_{k=1}^{\infty} \frac{\cos^2 k}{k\sqrt{k}} \qquad \text{c. } \sum_{n=1}^{\infty} \frac{e^{\sqrt{n}}}{\sqrt{n}} \qquad \text{d. } \sum_{n=2}^{\infty} \sin \left(\frac{2}{n}\right)$$

12. Determine whether each of the following series converges absolutely, conditionally or diverges. Justify your answers.

a.
$$\sum_{n=1}^{\infty} \left(\frac{-n}{2n+1}\right)^{3n}$$
 b.
$$\sum_{n=2}^{\infty} (-1)^n \frac{\log n}{\sqrt{n}}$$

13. Find the radius and interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{3^n}{2n+1} (x-2)^{n+1}.$$

14. Find the Taylor series of $f(x) = \cos 2x$ centred at $\frac{1}{2}\pi$. State the first four *non-zero* terms and give the formula for the n^{th} term.

Solution outlines

- 1. $\sin\left(\arccos\sqrt{1-x^2}\right)=|x|$, and hence $\frac{d}{dx}\left\{\sin\left(\arccos\sqrt{1-x^2}\right)\right\}=\frac{x}{|x|}$ (1 if x>0 and -1 if x<0).
- ${\bf 2.}\;$ a. Separating terms and simplifying reveals two basic integrals:

$$\int_{1}^{\sqrt{2}} \frac{4 + 2\sqrt{x^2 - 1}}{x\sqrt{x^2 - 1}} dx = \left(4 \operatorname{arcsec} x + 2 \log x\right)\Big|_{1}^{\sqrt{2}} = \pi + \log 2.$$

b. Partial integration gives

$$\int_{1}^{5} \frac{x+2}{\sqrt{2x-1}} dx = \left\{ (x+2)\sqrt{2x-1} - \frac{1}{3}(2x-1) \right\} \Big|_{1}^{5}$$
$$= \frac{1}{3}(x+7)\sqrt{2x-1} \Big|_{1}^{5} = \frac{28}{3}.$$

c. By the product rule for differentiation,

$$\frac{d}{dx}\left\{e^{-2x}\cos 6x\right\} = -2e^{-2x}\cos 6x - 6e^{-2x}\sin x, \text{ and } \frac{d}{dx}\left\{e^{-2x}\sin 6x\right\} = 6e^{-2x}\cos 6x - 2e^{-2x}\sin x.$$

Subtracting the first equation from three times the second, and then rearranging the corresponding integral equation, one obtains

$$\int e^{-2x} \cos 6x \, dx = \frac{1}{20} e^{-2x} (3\sin 6x - \cos 6x) + C.$$

d. Integrate by parts after revising the logarithmic factor, to obtain

$$\frac{1}{2} \int \sqrt{t+1} \log(t+1) dt = \frac{1}{3} (t+1)^{3/2} \log(t+1) - \frac{2}{9} (t+1)^{3/2} + C$$
$$= \frac{1}{9} \left(3 \log(t+1) - 2 \right) \sqrt{(t+1)^3} + C.$$

e. Letting $t = \sin x$ gives

$$\int_0^{\frac{1}{2}\pi} \sin^3 x \cos^3 x \, dx = \int_0^1 t^3 (1 - t^2) \, dt = \frac{1}{12} t^4 (3 - 2t^2) \Big|_0^1 = \frac{1}{12}.$$

f. Let $t = \sqrt{x^2 - 36}/x$, or $t^2 = 1 - 36/x^2$, so that $\frac{1}{26}t \, dt = dx/x^3$, and hence

$$\int \frac{dx}{x^2 \sqrt{x^2 - 36}} = \int \frac{x}{\sqrt{x^2 - 36}} \cdot \frac{dx}{x^3} = \frac{1}{36} \int dt = \frac{\sqrt{x^2 - 36}}{36x} + C.$$

g. Resolve the integrand into partial fractions and split the last fraction to integrate.

$$\int \frac{x+4}{x(x^2+2)} dx = \int \left\{ \frac{2}{x} - \frac{2x-1}{x^2+2} \right\} dx$$
$$= \int \left\{ \frac{2}{x} - \frac{2x}{x^2+2} + \frac{1}{x^2+2} \right\} dx$$
$$= \log \frac{x^2}{x^2+2} + \frac{1}{2}\sqrt{2} \arctan \frac{1}{2}x\sqrt{2} + C.$$

3. a.
$$\int_{2}^{\infty} \frac{dx}{1 - x^{2}} = \lim_{t \to \infty} \int_{2}^{t} \frac{dx}{1 - x^{2}} = \lim_{t \to \infty} \frac{1}{2} \log \frac{t + 1}{t - 1} - \frac{1}{2} \log 3 = -\frac{1}{2} \log 3$$

b. The integral diverges, because

$$\int_0^2 \frac{x \, dx}{x^2 - 4} = \lim_{\alpha \to 2^-} \int_0^\alpha \frac{x \, dx}{x^2 - 4} = \lim_{\alpha \to 2^-} \frac{1}{2} \log(4 - \alpha^2) - \log 2 = -\infty.$$

4. a. If y = 1/x, then

$$\lim_{x \to 0^+} \frac{(\log x)^2}{1 + x^{-1}} = \lim_{y \to \infty} \frac{(\log y)^2}{1 + y} = \lim_{y \to \infty} \frac{2}{y} = 0,$$

with two applications of l'Hôpital's rule.

b. We have $\lim_{x\to 0} (\sec x)^{\cot^2 x} = \lim_{x\to 0} e^{-\cos^2 x (\log\cos x)/\sin^2 x} = \sqrt{e}$, since

$$\lim_{x\to 0}\frac{\log\cos x}{\sin^2 x}=\lim_{x\to 0}\frac{-1}{2\cos^2 x}=-\tfrac{1}{2},\quad \text{by l'Hôpital's rule}.$$

c. Combining terms, and extracting the dominant powers of \boldsymbol{x} from the numerator and denominator, yields

$$\lim_{x \to \infty} \left\{ \frac{x^2 + 2}{x - 3} - \frac{(x - 2)^3}{x^2 + 1} \right\} = \lim_{x \to \infty} \frac{9 - 17/x + 44/x^2 - 24/x^3}{(1 - 3/x)(1 + 1/x^2)} = 9.$$

5. Since $2/x - 3x(x^2 + 2) = (4 - x^2)/(x(x^2 + 2))$ is equal to zero if $x = \pm 2$ and positive if $1 \le x < 2$, the area in question is equal to

$$\int_{1}^{2} \left\{ \frac{2}{x} - \frac{3x}{x^{2} + 2} \right\} dx = \frac{1}{2} \log \left. \frac{x^{4}}{(x^{2} + 2)^{3}} \right|_{1}^{2} = \frac{1}{2} \log 2.$$

6. a. The solid in question can be decomposed into annuli of inner radius $\frac{1}{4}x^2$ and outer radius $x^3 - 3x + 3$, for $-2 \le x \le 2$, so its volume is equal to

$$\pi \int_{-2}^{2} \left\{ (x^3 - 3x + 3)^2 - (\frac{1}{4}x^2)^2 \right\} dx = \pi \int_{0}^{2} \left\{ 2x^6 - \frac{97}{8}x^4 + 18x^2 + 18 \right\} dx$$
$$= \pi \left\{ \frac{2}{7}x^7 - \frac{97}{40}x^5 + 6x^3 + 18x \right\} \Big|_{0}^{2} = \frac{1504}{35}\pi.$$

b. The solid in question can be decomposed into cylindrical shells of radius 3-x and height $x^3-\frac14x^2-3x+3$, for $-2\leqslant x\leqslant 2$, so its volume is equal to

$$2\pi \int_{-2}^{2} (3-x)(x^3 - \frac{1}{4}x^2 - 3x + 3) dx = 2\pi \int_{0}^{2} \left\{ -2x^4 + \frac{9}{2}x^2 + 18 \right\} dx$$
$$= 2\pi \left\{ \frac{2}{5}x^5 + \frac{3}{2}x^3 + 18x \right\} \Big|_{0}^{2} = \frac{352}{5}\pi.$$

7. Separating variables gives

$$\int \frac{dy}{\sqrt{1-y^2}} = \int \frac{dx}{1+x^2}, \quad \text{or} \quad \arcsin y = \arctan x + C.$$

Since y(1) = 0 implies that $C = \frac{1}{4}\pi$, we must have $x \ge -1$, in which case

$$y = \sin(\arctan x - \frac{1}{4}\pi) = \frac{x - 1}{\sqrt{2(x^2 + 1)}}$$

8. a. The sum of the series is $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{2n+1}{n+2} = 2.$

b. The series begins with n=1, so $s_n=a_1+\cdots+a_n$ (n terms), and therefore $a_5=s_5-s_4=\frac{11}{7}-\frac{3}{2}=\frac{1}{14}$.

9. a. Since $-1/n < (\cos n)/n < 1/n$ for $n \ge 1$, and $\lim_{n \to \infty} (\pm 1/n) = 0$, $\lim_{n \to \infty} (\cos n)/n = 0$ by the Squeeze Theorem. In this case, no conclusion can be drawn about the series only from the limit of its general term.

b. Among infinitely many possibilities:

- if $a_n = 2^{-\frac{1}{2}(n+1)} \sin^2 \frac{1}{2}\pi n + \cos^2 \frac{1}{2}\pi n$ for $n \ge 1$, then $a_{2n} = 1$ for $n \ge 1$ and $\lim_{n \to \infty} a_n \ne 0$, so $\sum a_n$ diverges by the vanishing criterion;
- $\bullet \ \text{ if } a_n = \frac{(|\pi e n| + \pi e n)(\sqrt{2^{n+1}}\cos^2\frac{1}{2}\pi n + \sin^2\frac{1}{2}\pi n)}{|\pi e n|\sqrt{2^{n+3}}} \text{ for } n \geqslant 1, \\ \text{ then } \lim_{n \to \infty} a_n = 0 \text{ (since } a_n = 0 \text{ for } n \geqslant 9) \text{ and no conclusion can be}$
- if $a_n = \sum_{i=1}^4 \left\{ \prod_{\substack{1 \leqslant j \leqslant 8 \\ j \neq 2i-1}} \frac{2^{-i}(n-j)}{2i-j-1} + \prod_{\substack{1 \leqslant j \leqslant 8 \\ j \neq 2i}} \frac{n-j}{2i-j} \right\}$ for $n \geqslant 1$, then

 $\lim a_n = \infty$ and $\sum a_n$ diverges by the vanishing criterion.

drawn about the series only from the limit of its general term;

No content in sight—just a matter of "guess what teacher wants to hear."

10. a. This is a geometric series with first term $-\frac{320}{27}$ and common ratio $-\frac{4}{9}$, so

$$\sum_{n=1}^{\infty} \frac{5(-4)^{n+2}}{3^{2n+1}} = \frac{-320/27}{1 - (-4/9)} = -\frac{320}{39}.$$

b. This is a divergent telescoping series, since

$$\sum_{n=1}^{\infty} \log \frac{2n-1}{2n+1} = \lim_{n \to \infty} \sum_{k=1}^{n} \log \frac{2k-1}{2k+1} = -\lim_{n \to \infty} \log(2n+1) = -\infty.$$

11. a. Let $\alpha_n = (n!)^2/(2n!)$; then

$$\lim_{n \to \infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = \lim_{n \to \infty} \frac{n+1}{2(2n+1)} = \frac{1}{4},$$

which is smaller than one. Therefore, $\sum \alpha_n$ converges by the ratio test.

b. Since

$$0 < \frac{\cos^2 k}{k\sqrt{k}} < \frac{1}{k\sqrt{k}}$$

for $k \geqslant 1$,

$$\sum_{k=1}^{\infty} \frac{\cos^2 k}{k\sqrt{k}}$$

converges with the p-series $\sum k^{-3/2}$ by the comparison test.

c. Since $e^x > x$ for all real numbers x, the series

$$\sum_{n=1}^{\infty} \frac{e^{\sqrt{n}}}{\sqrt{n}}$$

diverges by the vanishing criterion.

d. Since $\frac{1}{2}\vartheta < \vartheta\cos\vartheta < \sin\vartheta$ if $0 < \vartheta < \frac{1}{3}\pi, 1/n < \sin(2/n)$ if $n \geqslant 2$, and so

$$\sum_{n=2}^{\infty} \sin\left(\frac{2}{n}\right)$$

diverges with the harmonic series by the comparison test.

12. a. Let $\alpha_n = (-n/(2n+1))^{3n}$; then

$$\lim_{n \to \infty} \sqrt[n]{|\alpha_n|} = \lim_{n \to \infty} \left(\frac{1}{2 + 1/n}\right)^3 = \frac{1}{8},$$

which is less than one. Therefore, $\sum \alpha_n$ is absolutely convergent by the root test. b. Let $f(x) = (\log x)/\sqrt{x}$; then f is decreasing on (e^2, ∞) , since

$$f'(x) = (2 - \log x)/(2x\sqrt{x}) < 0$$

if $x>e^2$, f(x)>0 if x>1, and $f(x)\to 0$ as $x\to \infty$ by (one application of) l'Hôpital's rule. Therefore, $\sum (-1)^n f(n)$ converges by the alternating series test. On the other hand, $f(x)>1/\sqrt{x}$ if x>e, so $\sum f(n)$ diverges with the p-series $\sum n^{-1/2}$ by the comparison test. Hence, the series

$$\sum_{n=2}^{\infty} (-1)^n \frac{\log n}{\sqrt{n}}$$

is conditionally convergent.

13. Let $\alpha_n = 3^n(x-2)^{n+1}/(2n+1)$; then

$$\lim_{n \to \infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = \lim_{n \to \infty} \frac{3(2n+1)}{2n+3} |x-2| = 3|x-2|,$$

so by the ratio test $\sum \alpha_n$ converges absolutely if $\frac{5}{3} < x < \frac{7}{3}$ and diverges if $x < \frac{5}{3}$ or $x > \frac{7}{3}$. If $x = \frac{5}{3}$ then $\alpha_n = (-1)^{n+1}/(2n+1)$, so $\sum \alpha_n$ converges by the alternating series test (since $\left\{1/(2n+1)\right\}$ is positive and decreasing, and its limit is zero). If $x = \frac{7}{3}$ then $\alpha_n = 1/(2n+1) \geqslant 1/(3n)$ if $n \geqslant 1$, so $\sum \alpha_n$ diverges with the harmonic series by the comparison test. Therefore, the interval of convergence of $\sum \alpha_n$ is $\left[\frac{5}{3}, \frac{7}{3}\right]$; its radius of convergence is $\frac{1}{3}$.

14. Using the Maclaurin series of $\cos t$, where $t = 2x - \pi$, gives

$$\cos 2x = -\cos(2x - \pi) = -\cos 2\left(x - \frac{1}{2}\pi\right)$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^{k+1} 2^{2k}}{(2k)!} \left(x - \frac{1}{2}\pi\right)^{2k}$$

$$= -1 + 2\left(x - \frac{1}{2}\pi\right)^2 - \frac{2}{3}\left(x - \frac{1}{2}\pi\right)^4 + \frac{4}{45}\left(x - \frac{1}{2}\pi\right)^6 - \dots$$