(Marks)

- 1. Evaluate the limit or explain why it does not exist. Use $+\infty$, $-\infty$ or "does not exist" where appropriate.
- (a) $\lim_{x \to -3} \frac{x^2 + x 6}{x^3 + 3x^2 5x 15}$ (2)
- (b) $\lim_{\theta \to 0} \frac{\sin \theta}{\sqrt{\theta + 2} \sqrt{2}}$ (2)
- (c) $\lim_{x \to \infty} \frac{3 + 2x + 5x^2 2x^3}{3x^2 + x + 7}$ (d) $\lim_{x \to -\infty} \frac{6x + 1}{\sqrt{4x^2 3}}$ (2)
- (2)
- 2. Find a value of c such that $g(x) = \begin{cases} \sqrt{cx-1}, & \text{if } x \leq 5 \\ \frac{200}{x^2}, & \text{if } x > 5 \end{cases}$ will be continuous at x = 5. (4)
- (3)3. Given the following graphs, evaluate the following if possible. Use $+\infty$, $-\infty$ or "does not exist" where appropriate. Assume that g'(1) = 1 and that $g(1) = \frac{1}{2}$.

- (a) $\lim_{x\to 0} f(x)$
- (b) $\lim_{x \to 0^-} \frac{f(x)}{g(x)}$
- (c) g'(0)
- (d) f'(0)
- (e) $\left(\frac{f}{g}\right)'(1)$
- (f) $(f \circ g)'(1)$
- 4. Does the function $R(x) = \frac{x^3}{1000} \frac{100}{x^2} + \frac{x}{10}$ have a zero in the open interval (1,10)? (3)Explain your answer.
- 5. Given the function $f(x) = \frac{x}{x+1}$, find f'(x) using the LIMIT DEFINITION of the deriva-(4)
 - 6. Find $\frac{dy}{dx}$ for each of the following:
- (a) $y = x^2 + 2^x + \ln|x| \frac{1}{2x} + \sqrt[3]{x^2} + \sqrt{e^{2\pi}}$ (3)
- (3)
- (b) $y = \sin(2x 3)^6 \cos^6(2x 3)$ (c) $y = \left(\frac{3x + 4}{5x^2 + 1}\right)^3$ (3)
- (d) $e^{xy} = 17x \tan(y)$ (3)
- (e) $y = (2x+3)^{2x+3}$ (3)
- (f) $y = \ln\left(\frac{(5x+2)^2 e^{5x}}{(2-\sqrt{x})^{2/3}}\right)$ (3)

(Marks)

- (4) 7. Determine for which values of x the function $g(x) = (x-3)^5(3x+4)^3$ has a horizontal tangent line.
- (4) 8. Find an equation for the tangent line to $y = \frac{3x+5}{x^2+3}$ when x=1.
 - 9. Given the curve $x^2 + xy + y^2 = 4$:
- (2) (a) Find $\frac{dy}{dx}$.
- (2) (b) Determine all points (x, y) on the curve where the tangent line is parallel to the line y = x + 4.
- (1) 10. (a) State the product rule for derivatives.
- (2) (b) Use logarithmic differentiation to prove the product rule for a function y = f(x)g(x).
- (5) 11. A new hydro-electric dam is built on Algonquin land in Parc de La Vérendrye. When the dam is finally closed, the flood waters spread outward in the form of a semi-circle centered at the middle of the dam, at a rate of 800,000 m² per hour. At what rate is the radius of the flooded land increasing when 2,000,000 m² of traditional native hunting grounds have been covered?

12. Given
$$f(x) = \frac{2+x-x^2}{(x-1)^2}$$
, $f'(x) = \frac{x-5}{(x-1)^3}$ and $f''(x) = \frac{14-2x}{(x-1)^4}$:

- (2) (a) Find all vertical and horizontal asymptotes.
- (1) (b) Find the intervals of increase and decrease.
- (1) (c) Find all local (relative) extrema.
- (1) (d) Find the intervals of upward and downward concavity.
- (1) (e) Find all inflection points.
- (3) (f) Sketch the graph of f. Label all intercepts, asymptotes, extrema and points of inflection
- (1) (g) Identify the absolute maximum and absolute minimum values of f(x) if they exist.
- (5) 13. A rectangular cage (called a battery cage) for a laying hen has a volume of 0.016 m³. While the European Union will have phased out battery cages by 2012 and Germany has already banned them, in Canada 98% of all hens are housed in battery cages. If the material for the base of the cage costs \$2 per m² and the material for the sides and the top costs \$3 per m², then what would be the dimensions of a lowest-cost battery cage with height 0.4 m?
- (4) 14. Find the absolute maximum and absolute minimum of the function $f(x) = 5x^{2/3} x^{5/3}$ on the closed interval [-1, 4].
 - 15. Consider the definite integral $\int_{1}^{3} (4x^2 + 1) dx$.
- (2) (a) Find an approximation to the value of the integral using a Riemann sum with right endpoints and 4 rectangles.
- (1) (b) Express the definite integral $\int_{1}^{3} (4x^{2} + 1) dx$ as a limit of Riemann sums. Do not evaluate the limit.
- (4) 16. Find the position function s(t) of a moving particle which has an acceleration function $a(t) = 12t^2 3\sin t$, an initial velocity of v(0) = 0 m/sec. and an initial position of s(0) = 3 m.
 - 17. Evaluate the following integrals.

(2) (a)
$$\int (x^5 + \sqrt[5]{x^2} - 5^x + 5^2) dx$$

(Marks)

(3) (b)
$$\int_{1}^{4} \frac{(x+2)^2}{\sqrt{x}} dx$$

(1) (c)
$$\int \frac{d}{dx} \sqrt{x^3 + 5} \, dx$$

(2)
$$(d) \int \frac{3\sin^2 x - 2}{\sin^2 x} dx$$

(3) 18. Find the area between $y = 2 + \frac{3}{x}$, x = 1, x = e and the x-axis.

19. Let
$$F(x) = \int_2^{\sqrt{x}} \sqrt{t^3 + 1} dt$$
.

- (1) (a) Evaluate F(4).
- (2) (b) Evaluate F'(x) using the Fundamental Theorem of Calculus.

