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1. Let y = arcsin(1/x) + arcsec x, for x > 1. Find dy/dx and simplify your
answer.

2. Evaluate each of the following integrals.

(a)
Z

x + 21

(x + 1)(x2 + 9)
dx (b)

Z

e2x cos 6x dx

(c)
Z

dx

(4x2 − 9)3/2
(d)

Z

ln(x2 + 1) dx

(e)
Z

sin2√x cos3
√

x√
x

dx (f)
Z

1
4

π

0

sec2 x dx√
4 − tan2 x

3. Evaulate each of the following limits.

(a) lim
x→0+

ln sinx

ln tan x
(b) lim

x→0
(1 − 2x)2/x

(c) lim
x→0+

„

1

x2
− 1

sinx

«

4. Evaluate each of the following improper integrals.

(a)
Z ∞

0
(x − 1)e−x dx (b)

Z 5

3

2x − 3

x − 3
dx

5. (a) Sketch the region R1 bounded by the parabola y = x2 + 1 and the line
y = x + 3. Find the area of R1.

(b) Sketch the region R2 enclosed by y = sinx and the x-axis, from x = 0
to x = π. Set up an integral that represents the volume of the solid
obtained by revolving R2 about

(i) the x-axis,
(ii) the y-axis.

Evaluate one of these integrals.

6. Solve the initial-value problem:

dy

dx
=

y + 1

cos x
, y

`

1
4
π

´

=
√

2.

7. For each of the following, state whether the sequence {an} converges and, if
so, to what value.

(a) an =
(2n)!

(2n + 2)!
(b) an =

sinn

n

(c) an = ln(2n − 1) − ln(n + 4)

8. (a) Does the series
∞

X

n=1

4n

n!

converge or diverge? Justify your answer.
(b) Does the sequence

an =
4n

n!
converge or diverge? Justify your answer.

9. Determine whether or not each of the following series converges or diverges.
Justify all assertions.

(a)
∞

X

n=1

„

(n + 1)2

2n + 3n2

«n

(b)
∞

X

n=1

nn

n!

(c)
∞

X

n=1

n3 + 1

n5 + n4
(d)

∞
X

n=1

5n+1 − 3n−1

4n

10. State, with justification, whether each of the following series converges ab-
solutely, converges conditionally, or diverges.

(a)
∞

X

n=1

(−1)n+1(n + 1)2

3n2 + 1
(b)

∞
X

n=1

cos n

n
√

n

(c)
∞

X

n=2

(−1)n ln n

n
(d)

∞
X

n=1

(−1)n+1 e−
√

n

√
n

11. Find the Taylor series of f(x) = sinx centred at π. Express the series using
sigma notation.

12. Find the sequence of partial sums of the series
∞

X

n=1

˘

ln(2n + 3) − ln(2n + 1)
¯

,

and use it to determine whether the series converges.

13. Find the radius and interval of convergence of the power series
∞

X

n=1

(−1)n(x + 4)n

3n
√

n + 1
.

ANSWERS

In questions 7–13, an denotes the general term of the sequence or series in question. In question 12, sn denotes the general term of the sequence of partial sums of the
series in question.

1. 0

2. (a) ln
(x + 1)2

x2 + 9
+ arctan

`

1
3
x

´

+ C, (b) 1
20

e2x(3 sin 6x + cos 6x) + C,

(c)
−x

9
√

4x2 − 9
+ C, (d) x ln(x2 + 1) − 2x + 2 arctan x + C,

(e) 2
3

sin3 √
x − 2

5
sin5√x + C, (f) 1

6
π.

3. (a) 1, (b) e−4, (c) ∞ (so the limit does not exist).

4. (a) 0, (b) ∞ (so the integral diverges).

5. (a) 9
2

,

(b) (i) π

Z π

0
sin2 x dx = 1

2
π2, (ii) 2π

Z π

0
x sinx dx = 2π2.

6. y = sec x + tan x − 1.

7. (a) an → 0, (b) an → 0, and (c) an → ln 2, each as n → ∞.

8. (a)
P

an converges by the ratio test. (b) an → 0, by (a) and the vanishing
criterion.

9. (a)
P

an converges by the root test ( n
√

a → 1
3

as n → ∞).
(b)

P

an diverges by the ratio test (an+1/an → e as n → ∞).
(c)

P

an converges by the comparison test ( |an| < 2n−2).
(d)

P

an diverges by the vanishing criterion (an → ∞ as n → ∞).

10. (a)
P

an diverges by the vanishing criterion (|an| → 1
3

as n → ∞).

(b)
P

an is absolutely convergent by the comparison test (|an| < n−3/2).
(c)

P

an is conditionally convergent by the alternating series test (|an| ↓ 0
as n → ∞) and the comparison test (|an| > n−1 if n > 3).

(d)
P

an is absolutely convergent by the comparison test (|an| < n−3/2).

11. sinx = − sin(x − π) =
∞

X

n=0

(−1)n−1(x − π)2n+1

(2n + 1)!

12.
P

an diverges since sn = ln
˘

1
3
(2n + 3)

¯

→ ∞ as n → ∞.

13. The interval of convergence of the power series is (−7,−1 ].



SOLUTION OUTLINES

Hereafter, according to the context, I denotes the integral in question, ` denotes the limit in question, A denotes the area in question, V denotes the volume in question,
an denotes the general term of the sequence or series in question and sn denotes the general term of the sequence of partial sums of the series in question. The symbol
`’HR
= indicates an application of l’Hôpital’s rule.

1.
dy

dx
= − 1

x2

1
p

1 − 1/x2
+

1

x
√

x2 − 1
= 0.

2. (a) I =

Z

2 dx

x + 1
−

Z

2x − 3

x2 + 9
dx = ln

(x + 1)2

x2 + 9
+ arctan

`

1
3
x

´

+ C

(b) I = 1
18

e2x(3 sin 6x + cos 6x) − 1
9
I

∴ I = 1
20

e2x(3 sin 6x + cos 6x) + C

+ e2x cos 6x

− 2e2x 1
6

sin 6x

+ 4e2x − 1
36

cos 6x

(c) I =

Z

dt

9t2
= − 1

9t
+ C =

−x

9
√

4x2 − 9
+ C, where t2 = 4 − 9x−2.

(d) I = x ln(x2+1)−
Z

2x2

x2 + 1
dx = x ln(x2+1)−2x+2arctan x+C

(e) I =

Z

2t2(1 − t2) dt = 2
3

sin3 √
x − 2

5
sin5√x + C, where t =

sin
√

x.

(f) I =

Z 1

0

dt√
4 − t2

= arcsin
`

1
2
t
´

˛

˛

˛

˛

1

0

= 1
6
π, where t = tan x.

3. (a) `
`’HR
= lim

x→0+

cot x tan x

sec2 x
= 1

(b) ` = lim
x→0

e2 ln(1−2x)/x `’HR
= lim

x→0
e−4/(1−2x) = e−4

(c) ` = lim
x→0+

1

x

„

1

x
− x

sinx

«

= ∞

4. (a) I = lim
t→∞

`

−xe−x
´

˛

˛

˛

˛

t

0

`’HR
= 0 (b) I = lim

t→3+

`

2x + 3 ln(x− 3)
´

˛

˛

˛

˛

5

t

= ∞

5. (a) A =

Z 2

−1

˘

(x + 3)2 − (x2 + 1)2
¯

dx = 9
2

(b) (i) V = π

Z π

0
sin2 xdx = 1

2
π(x − sinx cos x)

˛

˛

˛

˛

π

0

= 1
2
π2

(ii) V = 2π

Z π

0
x sin xdx = 2π(sin x − x cos x)

˛

˛

˛

˛

π

0

= 2π2

6. One has
Z

dy

y + 1
=

Z

dx

cos x
, so y = A(sec x + tan x) − 1. Using

y
`

1
4
π

´

=
√

2, gives y = sec x + tan x − 1.

7. (a) an =
1

2(n + 1)(2n + 1)
→ 0 as n → ∞.

(b) |an| < 1/n → 0, and therefore an → 0 as n → ∞ by the squeeze
theorem.

(c) an = ln
2 − 1/n

1 + 4/n
→ ln 2 as n → ∞.

8. (a) an > 0 and an+1/an = 4/(n+1) → 0 as n → ∞, so
P

an converges
by the ratio test.

(b) an → 0, e.g., by the vanishing criterion.

9. (a) n
√

an =
(1 + 1/n)2

2/n + 3
→ 1

3
as n → ∞, so

P

an converges by the root

test.
(b) an+1/an =

`

1 + 1
n

´n → e as n → ∞, so
P

an diverges by the ratio
test.

(c) 0 < an 6 2n−2, so
P

an converges with
P

n−2 by the comparison
test.

(d) an → ∞ as n → ∞ so
P

an diverges by the vanishing criterion.

10. (a) |an| → 1
3

as n → ∞ so
P

an diverges by the vanishing criterion.

(b) |an| < n−3/2 so
P

an is absolutely convergent by the comparison test.
(c) |an| is decreasing if n > 3 and |an| → 0 (e.g., by l’Hôpital’s rule) so

P

an is convergent; but |an| > n−1 if n > 3 so
P|an| diverges by the

comparison test (with the harmonic series). Therefore,
P

an is condition-
ally convergent.

(d) The maximum value of the function f(x) = ln x/
√

x is 2/e (at x = e2),
so e−

√
n < n−1. Therefore |an| < n−3/2, so

P

an is absolutely con-
vergent by the comparison test.

11. sinx = − sin(x − π) =
∞

X

n=0

(−1)n−1(x − π)2n+1

(2n + 1)!

12. sn = ln
˘

1
3

ln(2n + 3)
¯

→ ∞ as n → ∞, so
P

an diverges.

13. |an+1/an | → 1
3
|x + 4| as n → ∞, so the radius of convergence of

P

an

is 3. When x = −7 the series diverges because it is (a tail of) the p-series with
p = 1

2
, and when x = −1 the series converges by the alternating series test.

Therefore, the interval of convergence of the power series is (−7,−1 ].


