- 1. Let $y = \arcsin(1/x) + \operatorname{arcsec} x$, for x > 1. Find dy/dx and simplify your
- 2. Evaluate each of the following integrals.

(a)
$$\int \frac{x+21}{(x+1)(x^2+9)} dx$$
 (b) $\int e^{2x} \cos 6x dx$

(b)
$$\int e^{2x} \cos 6x \, dx$$

(c)
$$\int \frac{dx}{(4x^2-9)^{3/2}}$$

(d)
$$\int \ln(x^2+1) dx$$

(e)
$$\int \frac{\sin^2 \sqrt{x} \cos^3 \sqrt{x}}{\sqrt{x}} dx$$
 (f)
$$\int_0^{\frac{1}{4}\pi} \frac{\sec^2 x dx}{\sqrt{4 - \tan^2 x}}$$

(f)
$$\int_{0}^{\frac{1}{4}\pi} \frac{\sec^2 x \, dx}{\sqrt{4 - \tan^2 x}}$$

3. Evaulate each of the following limits.

(a)
$$\lim_{x \to 0^+} \frac{\ln \sin x}{\ln \tan x}$$

(b)
$$\lim_{x\to 0} (1-2x)^{2/x}$$

(c)
$$\lim_{x \to 0^+} \left(\frac{1}{x^2} - \frac{1}{\sin x} \right)$$

4. Evaluate each of the following improper integrals.

(a)
$$\int_0^\infty (x-1)e^{-x} dx$$
 (b) $\int_3^5 \frac{2x-3}{x-3} dx$

(b)
$$\int_{3}^{5} \frac{2x-3}{x-3} dx$$

- 5. (a) Sketch the region \mathcal{R}_1 bounded by the parabola $y = x^2 + 1$ and the line y = x + 3. Find the area of \mathcal{R}_1 .
 - (b) Sketch the region \mathcal{R}_2 enclosed by $y=\sin x$ and the x-axis, from x=0to $x = \pi$. Set up an integral that represents the volume of the solid obtained by revolving \mathcal{R}_2 about
 - (i) the x-axis,
 - (ii) the y-axis.

Evaluate one of these integrals.

6. Solve the initial-value problem:

$$\frac{dy}{dx} = \frac{y+1}{\cos x}, \ y\left(\frac{1}{4}\pi\right) = \sqrt{2}.$$

7. For each of the following, state whether the sequence $\{a_n\}$ converges and, if

(a)
$$a_n = \frac{(2n)!}{(2n+2)!}$$

(b)
$$a_n = \frac{\sin n}{n}$$

(c)
$$a_n = \ln(2n-1) - \ln(n+4)$$

8. (a) Does the series

$$\sum_{n=1}^{\infty} \frac{4^n}{n!}$$

converge or diverge? Justify your answer.

(b) Does the sequence

$$a_n = \frac{4^n}{n!}$$

converge or diverge? Justify your answer.

9. Determine whether or not each of the following series converges or diverges. Justify all assertions.

(a)
$$\sum_{n=1}^{\infty} \left(\frac{(n+1)^2}{2n+3n^2} \right)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^3 + 1}{n^5 + n^4}$$

(d)
$$\sum_{n=1}^{\infty} \frac{5^{n+1} - 3^{n-1}}{4^n}$$

10. State, with justification, whether each of the following series converges absolutely, converges conditionally, or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+1)^2}{3n^2+1}$$
 (b) $\sum_{n=1}^{\infty} \frac{\cos n}{n\sqrt{n}}$

(b)
$$\sum_{n=1}^{\infty} \frac{\cos n}{n\sqrt{n}}$$

$$(c) \sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n}$$

(c)
$$\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n}$$
 (d) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{e^{-\sqrt{n}}}{\sqrt{n}}$

- 11. Find the Taylor series of $f(x) = \sin x$ centred at π . Express the series using sigma notation.
- 12. Find the sequence of partial sums of the series

$$\sum_{n=1}^{\infty} \{ \ln(2n+3) - \ln(2n+1) \},\,$$

and use it to determine whether the series converges.

Find the radius and interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+4)^n}{3^n \sqrt{n+1}}.$$

ANSWERS

In questions 7-13, a_n denotes the general term of the sequence or series in question. In question 12, s_n denotes the general term of the sequence of partial sums of the series in question.

- 1. 0
- 2. (a) $\ln \frac{(x+1)^2}{x^2+9} + \arctan(\frac{1}{3}x) + C$, (b) $\frac{1}{20}e^{2x}(3\sin 6x + \cos 6x) + C$, (c) $\frac{-x}{9\sqrt{4x^2-9}} + C$, (d) $x \ln(x^2+1) - 2x + 2 \arctan x + C$, (e) $\frac{2}{3}\sin^3\sqrt{x} - \frac{2}{5}\sin^5\sqrt{x} + C$, (f) $\frac{1}{6}\pi$.
- 3. (a) 1, (b) e^{-4} , (c) ∞ (so the limit does not exist).
- 4. (a) 0, (b) ∞ (so the integral diverges).
- 5. (a) $\frac{9}{2}$.

(b) (i)
$$\pi \int_0^{\pi} \sin^2 x \, dx = \frac{1}{2}\pi^2$$
, (ii) $2\pi \int_0^{\pi} x \sin x \, dx = 2\pi^2$.

- 6. $y = \sec x + \tan x 1$.
- 7. (a) $a_n \to 0$, (b) $a_n \to 0$, and (c) $a_n \to \ln 2$, each as $n \to \infty$.

- 8. (a) $\sum a_n$ converges by the ratio test. (b) $a_n \to 0$, by (a) and the vanishing criterion.
- 9. (a) $\sum a_n$ converges by the root test ($\sqrt[n]{a} \to \frac{1}{3}$ as $n \to \infty$). (b) $\sum a_n$ diverges by the ratio test $(a_{n+1}/a_n \to e \text{ as } n \to \infty)$. (c) $\sum a_n$ converges by the comparison test ($|a_n| < 2n^{-2}$). (d) $\sum a_n$ diverges by the vanishing criterion $(a_n \to \infty \text{ as } n \to \infty)$.
- 10. (a) $\sum a_n$ diverges by the vanishing criterion $(|a_n| \to \frac{1}{3} \text{ as } n \to \infty)$.

 - (b) $\sum a_n$ is absolutely convergent by the comparison test $(|a_n| < n^{-3/2})$. (c) $\sum a_n$ is conditionally convergent by the alternating series test $(|a_n| \downarrow 0$ as $n \to \infty$) and the comparison test $(|a_n| > n^{-1} \text{ if } n \geqslant 3)$.
 - (d) $\sum a_n$ is absolutely convergent by the comparison test $(|a_n| < n^{-3/2})$.

11.
$$\sin x = -\sin(x - \pi) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}(x - \pi)^{2n+1}}{(2n+1)!}$$

- 12. $\sum a_n$ diverges since $s_n = \ln\left\{\frac{1}{3}(2n+3)\right\} \to \infty$ as $n \to \infty$.
- 13. The interval of convergence of the power series is (-7, -1].

Hereafter, according to the context, $\mathscr I$ denotes the integral in question, ℓ denotes the limit in question, A denotes the area in question, V denotes the volume in question, a_n denotes the general term of the sequence or series in question and s_n denotes the general term of the sequence of partial sums of the series in question. The symbol

1.
$$\frac{dy}{dx} = -\frac{1}{x^2} \frac{1}{\sqrt{1 - 1/x^2}} + \frac{1}{x\sqrt{x^2 - 1}} = 0.$$

2. (a)
$$\mathscr{I} = \int \frac{2 dx}{x+1} - \int \frac{2x-3}{x^2+9} dx = \ln \frac{(x+1)^2}{x^2+9} + \arctan(\frac{1}{3}x) + C$$

(b)
$$\mathcal{J} = \frac{1}{18}e^{2x}(3\sin 6x + \cos 6x) - \frac{1}{9}\mathcal{J}$$

$$+ \frac{e^{2x}\cos 6x}{\cos 6x}$$

$$\therefore \mathcal{J} = \frac{1}{20}e^{2x}(3\sin 6x + \cos 6x) + C$$

$$+ \frac{e^{2x}\cos 6x}{4e^{2x} - \frac{1}{36}\cos 6x}$$
(c) $a_n = \ln \frac{2 - 1/n}{1 + 4/n} \rightarrow \ln 2$ as $n \rightarrow \infty$.
$$- \frac{2e^{2x} \frac{1}{6}\sin 6x}{4e^{2x} - \frac{1}{36}\cos 6x}$$
8. (a) $a_n > 0$ and $a_{n+1}/a_n = 4/(n+1) \rightarrow 0$ as $n \rightarrow \infty$, so $\sum a_n$ converges by the ratio test.

(c)
$$\mathscr{I} = \int \frac{dt}{9t^2} = -\frac{1}{9t} + C = \frac{-x}{9\sqrt{4x^2 - 9}} + C$$
, where $t^2 = 4 - 9x^{-2}$.

(d)
$$\mathscr{I} = x \ln(x^2 + 1) - \int \frac{2x^2}{x^2 + 1} dx = x \ln(x^2 + 1) - 2x + 2 \arctan x + C$$

(e)
$$\mathscr{I} = \int 2t^2(1-t^2) dt = \frac{2}{3}\sin^3 \sqrt{x} - \frac{2}{5}\sin^5 \sqrt{x} + C$$
, where $t = \sin \sqrt{x}$.

(f)
$$\mathscr{I} = \int_0^1 \frac{dt}{\sqrt{4-t^2}} = \arcsin\left(\frac{1}{2}t\right)\Big|_0^1 = \frac{1}{6}\pi$$
, where $t = \tan x$.

3. (a)
$$\ell \stackrel{\ell'HR}{=} \lim_{x \to 0^+} \frac{\cot x \tan x}{\sec^2 x} = 1$$

(b)
$$\ell = \lim_{x \to 0} e^{2\ln(1-2x)/x} \stackrel{\ell'HR}{=} \lim_{x \to 0} e^{-4/(1-2x)} = e^{-4}$$

(c)
$$\ell = \lim_{x \to 0^+} \frac{1}{x} \left(\frac{1}{x} - \frac{x}{\sin x} \right) = \infty$$

4. (a)
$$\mathscr{I} = \lim_{t \to \infty} \left(-xe^{-x} \right) \Big|_0^t \stackrel{\ell'HR}{=} 0$$
 (b) $\mathscr{I} = \lim_{t \to 3^+} \left(2x + 3\ln(x - 3) \right) \Big|_t^5 = \infty$

5. (a)
$$A = \int_{-1}^{2} \left\{ (x+3)^2 - (x^2+1)^2 \right\} dx = \frac{9}{2}$$

(b) (i)
$$V = \pi \int_0^{\pi} \sin^2 x \, dx = \frac{1}{2} \pi (x - \sin x \cos x) \Big|_0^{\pi} = \frac{1}{2} \pi^2$$

(ii)
$$V = 2\pi \int_0^\pi x \sin x \, dx = 2\pi (\sin x - x \cos x) \Big|_0^\pi = 2\pi^2$$

6. One has
$$\int \frac{dy}{y+1} = \int \frac{dx}{\cos x}$$
, so $y = A(\sec x + \tan x) - 1$. Using $y(\frac{1}{2}\pi) = \sqrt{2}$, gives $y = \sec x + \tan x - 1$.

7. (a)
$$a_n = \frac{1}{2(n+1)(2n+1)} \to 0 \text{ as } n \to \infty.$$

(b) $|a_n| < 1/n \to 0$, and therefore $a_n \to 0$ as $n \to \infty$ by the squeeze

(c)
$$a_n = \ln \frac{2 - 1/n}{1 + 4/n} \rightarrow \ln 2$$
 as $n \rightarrow \infty$.

(b) $a_n \to 0$, e.g., by the vanishing criterion.

(d)
$$\mathscr{I} = x \ln(x^2 + 1) - \int \frac{2x^2}{x^2 + 1} dx = x \ln(x^2 + 1) - 2x + 2 \arctan x + C$$
 9. (a) $\sqrt[n]{a_n} = \frac{(1 + 1/n)^2}{2/n + 3} \to \frac{1}{3}$ as $n \to \infty$, so $\sum a_n$ converges by the root

(b) $a_{n+1}/a_n = \left(1 + \frac{1}{n}\right)^n \to e$ as $n \to \infty$, so $\sum a_n$ diverges by the ratio

(c) $0 < a_n \le 2n^{-2}$, so $\sum a_n$ converges with $\sum n^{-2}$ by the comparison

(d) $a_n \to \infty$ as $n \to \infty$ so $\sum a_n$ diverges by the vanishing criterion.

10. (a) $|a_n| \to \frac{1}{3}$ as $n \to \infty$ so $\sum a_n$ diverges by the vanishing criterion.

(b) $|a_n| < n^{-3/2}$ so $\sum a_n$ is absolutely convergent by the comparison test.

(c) $|a_n|$ is decreasing if $n \ge 3$ and $|a_n| \to 0$ (e.g., by l'Hôpital's rule) so $\sum a_n$ is convergent; but $|a_n| > n^{-1}$ if $n \ge 3$ so $\sum |a_n|$ diverges by the comparison test (with the harmonic series). Therefore, $\sum a_n$ is condition-

The maximum value of the function $f(x) = \ln x / \sqrt{x}$ is 2/e (at $x = e^2$), so $e^{-\sqrt{n}} < n^{-1}$. Therefore $|a_n| < n^{-3/2}$, so $\sum a_n$ is absolutely convergent by the comparison test.

11.
$$\sin x = -\sin(x - \pi) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}(x - \pi)^{2n+1}}{(2n+1)!}$$

12.
$$s_n = \ln\left\{\frac{1}{3}\ln(2n+3)\right\} \to \infty \text{ as } n \to \infty, \text{ so } \sum a_n \text{ diverges.}$$

13. $|a_{n+1}/a_n| \to \frac{1}{3}|x+4|$ as $n\to\infty$, so the radius of convergence of $\sum a_n$ is 3. When x=-7 the series diverges because it is (a tail of) the p-series with $p=\frac{1}{2}$, and when x=-1 the series converges by the alternating series test. Therefore, the interval of convergence of the power series is (-7, -1].