(Marks)

1. Evaluate the following limits showing all important steps and using mathematical notation correctly.

(a)
$$\lim_{x \to 2} \frac{2x^2 - 7x + 6}{2x^2 + x - 10}$$

(b)
$$\lim_{x \to 4} \frac{\sqrt{x+12} - 4}{x-4}$$

(a)
$$\lim_{x \to 2} \frac{2x^2 - 7x + 6}{2x^2 + x - 10}$$
 (b) $\lim_{x \to 4} \frac{\sqrt{x + 12} - 4}{x - 4}$ (c) $\lim_{x \to -\infty} \frac{x + 3}{\sqrt{2x^2 + 5x}}$ (d) $\lim_{x \to 5^-} \frac{|2x - 10|}{3x - 15}$

(d)
$$\lim_{x \to 5^-} \frac{|2x - 10|}{3x - 15}$$

- 2. Using the *limit definition of derivative*, show that the derivative of $f(x) = \frac{1}{x+2}$ is $\frac{-1}{(x+2)^2}$.
- 3. Consider the function $f(x) = \frac{x}{2 x^2 \perp x}$.
 - (a) State the two values of x where f is not continuous, and in each case give a reason why.
 - (b) Evaluate the limit of f at each of these values, and state the type of discontinuity at each point.
- 4. Sketch the graph of a function having all of the following properties.
 - f(x) is continuous everywhere.
 - f(x) is differentiable everywhere except at $x = \pm 2$.
 - f'(x) < 0 only when |x| < 2.
- 5. Find the derivative for each of the following functions. It is not necessary to simplify your answers.

(a)
$$f(x) = 3x^4 - \frac{4}{x^3} + \sqrt[3]{x^4} - \log_3(4x) + 4^3$$
 (b) $f(x) = \left(\frac{x}{x^3 - 2}\right)^5$

(b)
$$f(x) = \left(\frac{x}{x^3 - 2}\right)^5$$

(c)
$$f(x) = e^{\tan x} \sec 3x$$

(d)
$$f(x) = \sqrt{1 + \sqrt{1 + x^2}}$$

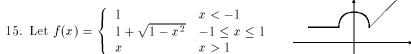
6. Find y' for each of the following.

(a)
$$y = (\sin x)^{x^2+1}$$

(b)
$$y = \frac{(x-4)^3}{x^5 \sqrt[3]{x^3+1}}$$

- 7. Find all points where the graph of $f(x) = e^x(x+1)^2$ has horizontal tangents.
- 8. Find the 15th derivative of $f(x) = \sin(x) + e^{-x} + x^{14}$.
- 9. Given the curve $x^2 xy + y^2 = 9$.
 - (a) Find an expression for the derivative, $\frac{dy}{dx}$.
 - (b) Find an equation for the tangent line which touches the curve at (3,0).
- 10. A rectangle of length L and width W has a constant area of 800 m^2 even though L is increasing by 2 m/s.
 - (a) Let D be the length of a diagonal. Find the rate of change of D when W = 10 m.

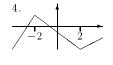
- (b) Find the width W, at the instant when it is decreasing at a rate of 1 m/s.
- 11. Given $f(x) = \frac{2+x-x^2}{(x-1)^2}$ $f'(x) = \frac{x-5}{(x-1)^3}$ and $f''(x) = \frac{2(7-x)}{(x-1)^4}$: find (if any)
 - (a) all x and y intercepts,
 - (b) equations of horizontal and vertical asymptotes,
 - (c) intervals where f(x) is increasing, decreasing, concave up and concave down,
 - (d) relative extrema and points of inflection.

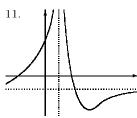

Make a neat sketch of the graph that clearly illustrates all the above-mentioned features.

- 12. Find the absolute maximum and the absolute minimum of $f(x) = \cos x + x \sin x$ on the interval $[0, \pi]$.
- 13. A rectangular page is to contain 45 square inches of printed material. The margins on all sides except the top are 1 in wide. At the top the margin is 1.5 in. Find the dimensions of the page such that the least amount of paper is used.

(Marks)

14. Find f if $f''(x) = -\cos x + e^x + \frac{15}{4}\sqrt{x}$, f'(0) = 1 and f(0) = 7.


Evaluate the integral $\int_{-2}^{2} f(x) dx$ by interpreting it in terms of areas.


- 16. Let S be the region bounded by $f(x) = \frac{3+x}{x}$ and the x-axis between x=1 and x=9.
 - (a) Approximate the value for the area of S by finding the Riemann sum with 4 equal subintervals, taking the sample points to be the midpoints.
 - (b) Find the exact value of the area. (Use whatever method you like.)
- 17. Use the Fundamental Theorem of Calculus to find g'(x) where $g(x) = \int_{1}^{\sin x} \frac{1-t^2}{t} dt$.
- 18. Evaluate

(a)
$$\int (e^x \cos x - \tan x) \sec x \, dx$$
 (b) $\int \frac{6 + x^{2/3} - 4x^5}{x} \, dx$ (c) $\int_{-1}^3 (x^2 + 2x) \, dx$

(c)
$$\int_{-1}^{3} (x^2 + 2x) \, \mathrm{d}x$$

- 1. (a) 1/9, (b) 1/8, (c) $-1/\sqrt{2}$, (d) -2/3 3. $\lim_{x\to 0} f(x) = 1$, removable; $\lim_{x\to -1/2} f(x)$ dne, infinite. 4. See below. 5. (a) $12x^3 + 12x^{-4} + \frac{4}{3}x^{1/3} + \frac{4}{4x \ln 3}$ (b) $5\left(\frac{x}{x^3 2}\right)^4 \left[\frac{(x^3 2) 3x^3}{(x^3 2)^2}\right]$ (c) $e^{\tan x} \sec^2 x \sec 3x + 3e^{\tan x} \sec 3x \tan 3x$
- (d) $\frac{1}{2\sqrt{1+\sqrt{1+x^2}}} \frac{2x}{2\sqrt{1+x^2}}$ 6. (a) $y' = y \left(2x \ln(\sin x) + (x^2+1) \frac{\cos x}{\sin x}\right)$ (b) $y' = y \left(\frac{3}{x-4} \frac{5}{x} \frac{3x^2}{3(x^3+1)}\right)$
- 7. (-1,0); $(-3,4/e^3)$ 8. $f^{(15)}(x) = -\cos x e^{-x}$ 9. (b) y = 2x 6 10.(a) $\frac{63}{4\sqrt{65}}$ m/s (b) 20 m
- 11. Intercepts (-1,0); (2,0); (0,2) minimum (5,-9/8) inflection (7,-10/9) asymptotes x=1; y=-1. See graph below. 12. Max $(\pi/2,\pi/2)$; min $(\pi,-1)$ 13. 8×10 in 14. $f(x)=\cos x+e^x+x^{5/2}+5$ 15. $\frac{9+\pi}{2}$
- 16. (a) 57/4, (b) $8 + 3 \ln 9$ 17. $\left(\frac{1 \sin^2 x}{\sin x}\right) \cos x$ 18. (a) $e^x \sec x + C$ (b) $6 \ln |x| + \frac{3}{2}x^{2/3} \frac{4}{5}x^5 + C$ (c) 52/3

