

FINAL EXAM MAY 2005

CALCULUS III 201–DDB

INSTRUCTORS: F. Lo Vasco, R.A.G. Seely

INSTRUCTIONS:

- 1. Write all of your solutions in the booklet provided and show your supporting work. Be sure to put your name on the booklet in the space provided.
- 2. Write on both sides of the pages in the booklet; if you need more paper, ask for another booklet, and be sure to put your name on all booklets handed in.
- 3. Check that this exam contains 2 numbered pages, excluding the cover page.

(Marks)

(7) 1. Let
$$f'(x) = \sum_{n=2}^{\infty} \frac{3^n (x-5)^n}{n!}$$
. (This is not a typo! It really does say f' .)

- (a) Find a power series for f(x) given that f(5) = 1.
- (b) Find the radius and interval of convergence for f(x).
- (c) Find $f^{(7)}(5)$.
- (8) 2. Find the Maclaurin series for each of the following functions; in each case give the radius of convergence of the series.

(a)
$$\int_0^x \frac{\arctan t}{t} \, dt$$

(b)
$$\frac{x^2}{x-2}$$

- (6) 3. Find the Taylor polynomial of degree 2 for $f(x) = \sqrt[4]{x}$ centered at x = 16; use it to estimate the value of $\sqrt[4]{15}$, and give a bound on the error of your estimate. Justify your calculations.
- (14) 4. Consider the curve given by parametric equations $\begin{cases} x = 3t t^3 \\ y = 3t^2 \end{cases}$
 - (a) Find the x and y intercepts and the coordinates of the point where the tangent is horizontal and where it is vertical.
 - (b) Find $\frac{d^2y}{dx^2}$ and deduce where the graph changes concavity.
 - (c) Sketch the graph of the curve, showing these details.
 - (d) The graph forms a loop; find the length of the loop.
 - (e) Find the area of the loop.
- (8) 5. (a) Sketch (on the same axes) the graphs of $r = 2 2\sin\theta$ and $r = 2\sin\theta$. Find all points of intersection.
 - (b) Set up (but do not evaluate) the integrals needed to find
 - (i) the area of the region inside both $r = 2 2\sin\theta$ and $r = 2\sin\theta$.
 - (ii) the length of the part of the curve $r = 2 2\sin\theta$ which lies **outside** $r = 2\sin\theta$.
- (8) 6. Identify and sketch the following surfaces. Show all your work, including appropriate traces and intercepts.

(a)
$$z^2 = 9 - 4x^2 - y^2$$

(b)
$$z^2 = r^2 - 9$$

(3) 7. What is the equation in spherical coordinates of the curve given by $(x^2+y^2+z^2)^2 = 2z(x^2+y^2)$?

(Marks)

- (10) 8. A curve C has the vector equation $\mathbf{r}(t) = \langle t, t^2, t \rangle$
 - (a) Sketch (and describe) the curve.
 - (b) Find the parametric equations of the tangent line to the curve at the point where C intersects the plane x + y + z + 1 = 0.
 - (c) Find the angle that the tangent line makes with the plane.
 - (d) Find the tangential and normal components of acceleration a_T, a_N of a particle moving along C.
- (4) 9. Find the equation of the circle of curvature (the osculating circle) of $y = x^3$ at the point (-1, -1).
- (3) 10. If z = z(x, y) is defined implicitly by the equation $xy + yz^2 + xz = 3$, what is the value of $\frac{\partial z}{\partial x}$ at (1, 1, 1)?
- (4) 11. Show that if f, g have continuous second derivatives then z(x, y) = f(x + ay) g(x ay) is a solution of the wave equation $\frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial x^2}$.
- (4) 12. Find all local extrema of $f(x,y) = 8x^3 + y^3 6x^2 6y^2 + 4$.
- (5) 13. Find the points on the sphere $x^2 + y^2 + z^2 = 3$ giving the maximum and minimum values of w = x + 2y + 2z.
- (4) 14. Evaluate:

$$\int_0^2 \int_0^{\sqrt{2y-y^2}} \sqrt{x^2 + y^2} \, dx \, dy$$

(4) 15. Set up a double integral to find the volume of the solid S enclosed by the surfaces x = 0, y = 2x, y = 4, and z = 4 - x. Set up a triple integral to find the same volume of S using $dV = dx \, dy \, dz$.

Calculate the volume of S using one of these integrals.

(4) 16. Sketch (and describe) the solid region whose volume is given by the integral

$$\int_0^{2\pi} \int_{\pi/6}^{\pi/2} \int_0^4 \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

(4) 17. The mass of a solid region S is given by $\iiint_S \mu(x,y,z) dV$, where $\mu(x,y,z)$ is the density function. Use spherical coordinates to find the mass of the solid region S which lies above $z = \sqrt{x^2 + y^2}$ and below $x^2 + y^2 + z^2 = 9$, given that $\mu(x,y,z) = \sqrt{x^2 + y^2 + z^2}$.