- 1. Estimate the limit numerically: $\lim_{x\to 0} \frac{1-e^{x^2}}{x^2}$
- 2. Refer to the sketch below to evaluate the following limits. If a value does not exist, state in which way $(+\infty, -\infty, or$ "does not

- (a) $\lim_{x \to -\infty} f(x)$
- (b) $\lim_{x \to -2} f(x)$
- (c) $\lim_{x \to 0} f(x)$
- (d) $\lim_{x \to a} f(x)$
- (e) $\lim_{x \to 1^+} f(x)$
- (f) $\lim_{x \to a} f(x)$
- 3. Calculate the following limits (if they exist). Make your answer as informative as possible: if a limit does not exist, say so; if appropriate one-sided limits exist instead, state them explicitly; if any limits are infinite, state this explicitly as well.
 - (a) $\lim_{x \to \infty} \frac{2x+7}{5x-x^2}$ (b) $\lim_{x \to -3^-} \frac{|x+3|}{x+3}$ (c) $\lim_{x \to 0} \frac{\sqrt{2x+4}-2}{x}$
 - (d) $\lim_{x \to 2} \frac{2x^2 5x + 2}{x^2 4}$ (e) $\lim_{x \to 1^-} \frac{x^2 + 1}{1 x}$
- 4. Find the value of c for which $f(x) = \begin{cases} cx+1 & \text{if } x \leq 3 \\ cx^2-1 & \text{if } x > 3 \end{cases}$
- 5. Sketch, if possible, the graph of a function that is continuous but not differentiable at x = 2. If this is not possible, explain why.
- State a limit definition of the derivative. Use this definition to find the derivative of $f(x) = x^2 - 3x$.
- 7. For each of the following functions, calculate the derivative $\frac{dy}{dx}$ Do not simplify your answers.
 - (a) $y = 7x^3\sqrt{x} + \frac{5}{x} + \sqrt[6]{x^5} 4\pi$ (b) $y = \frac{e^{x^3 x}}{2 + 7x^2}$
 - (c) $y = 2\cos x \sqrt{9 \sin^2 x}$ (d) $y = e^{\sec x} \tan(2x)$
 - (e) $y = (x + e^{2x})^{5x}$
- 8. For $f(x) = x\sqrt{98 x^2}$:
 - (a) find f'(x) and simplify your answer;
 - (b) find the values of x for which the tangent line is horizontal.
- 9. Find an equation for the line tangent to the graph of $y = \frac{8}{\sqrt{4+3x}}$ at the point (4, 2).

- 10. Given $xe^{x-y^2} = x^2 y^2$, find the slope of the tangent line to the curve at $(2, \sqrt{2})$.
- 11. Given $y = \ln(1 + x^2)$, find and simplify the second derivative y''
- 12. The position (in metres) of a particle at time t (seconds) is given by the equation $x=\frac{t^2}{200}+\ln(t+1)$. Find the velocity when the acceleration is 0. (Assume $t\geqslant 0$.)
- 13. Evaluate the following integrals:

(a)
$$\int \frac{x^5 + 2x - \sqrt[3]{x}}{x^4} dx$$

(a)
$$\int \frac{x^5 + 2x - \sqrt[3]{x}}{x^4} dx$$
 (b)
$$\int \left(\frac{2}{t} + e^t - \cos t\right) dt$$

(c)
$$\int (2+x^2)^2 dx$$

(c)
$$\int (2+x^2)^2 dx$$
 (d) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\varphi + \frac{2}{\sin^2 \varphi}\right) d\varphi$

- 14. Given that f'(x) = 2 4x, and f(1) = 5, find f(x).
- 15. Find the area of the region which lies between the curve $y = 16 x^4$ and the x-axis.
- 16. An object is moving with an acceleration given by the equation $a(t) = 16 - t^2$. (t is time in seconds, $t \ge 0$, a is acceleration in m/sec².) At what time is the velocity of the object maximal?
- 17. Determine whether or not the function $S(x) = \frac{1}{x} + x^2$ has a maximum value. If it does, what is the maximum value? If you think it does not have a maximum, justify your claim.
- 18. An enclosure in the form of a rightangled triangle is constructed using some fencing along two-sides, and the river bank along the bypotenuse, as shown in the diagram. If 400 m of fencing is available, what are the dimensions x and y that maximize the area of the enclosure?

- 19. Find the vertical and horizontal asymptotes to the graph of $f(x) = \left(\frac{2x - 77}{4 + 300x}\right)^2.$
- 20. For the function $f(x) = x\sqrt{1-x^2}$, the first and second derivatives

$$f'(x) = \frac{1 - 2x^2}{\sqrt{1 - x^2}}$$
 and $f''(x) = \frac{x(2x^2 - 3)}{(1 - x^2)^{3/2}}$

- (a) find the intervals where the function is increasing, and the intervals where it is decreasing;
- (b) find the intervals where the function is concave up, and the intervals where it is concave down:
- find the coordinates of all relative (or local) extreme points;
- (d) find the coordinates of all points of inflection;
- (e) sketch the graph.

Make sure that your graph clearly illustrates all these features.