- 1. (a) t = 0, -3, (x, y) = (0, 0), (-21, 0)
 - (b) $\frac{dy}{dx} = \frac{2t+3}{1-4t}$. The graph has intercepts as in (a); it decreases to a minimum at $(-6, -\frac{9}{4})$, then increases to the origin.
 - (c) Area: $\frac{63}{2}$
 - (d) $\int_{-3}^{0} \sqrt{(1-4t)^2+(2t+3)^2} dt$
- 2. (a) The cardioid and circle are pretty standard they both hit the origin, have the x-axis as central, and the cardioid has another x-intercept at (2,0), the circle at (3,0).
 - (b) Area: π

3. (a)
$$\int_0^x \frac{t^2 dt}{1+t^4} = \sum_{n=0}^\infty (-1)^n \frac{x^{4n+3}}{4n+3}$$

- (b) The interval of convergence: $-1 \le x \le 1$
- (c) $\frac{109}{2688} \pm \frac{1}{22528}$
- 4. (a) $\frac{x \sin x}{x^3} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+3)!}$
 - (b) $\lim_{x \to 0} \frac{x \sin x}{x^3} = \frac{1}{6}$
- 5. Tangent plane: $x y + 2z = \frac{\pi}{2}$; Normal line: $\{x = 1 + t, y = 1 t, z = \frac{\pi}{4} + 2t\}$.
- 6. (a) $D_{\mathbf{u}}f = \frac{1}{\sqrt{2}}$
 - (b) Direction: $-\nabla f = \langle -1, 8, 0 \rangle$ (normalize); Rate of decrease: $\sqrt{65}$
- 7. $T = \frac{1}{\sqrt{5}} \langle 2, \sin t, \cos t \rangle$, $N = \langle 0, \cos t, -\sin t \rangle$, $\kappa = \frac{1}{5t}$, $a_T = \sqrt{5}$, $a_N = t$
- 8. Use: $\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta$ and $\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} (-r \sin \theta) + \frac{\partial u}{\partial y} (r \cos \theta)$ (and some simple algebra).
- 9. CPs: (0,0) is a saddle point, (1,1) is a local min.
- 10. Max value is 6, attained at $(3, \frac{3}{2}, 1)$
- 11. The integrals:
 - (a) $1 \cos 4$
- (b) $\frac{\pi}{4}$ (e -1)
- (c) $\frac{\pi}{8}$

12. The volume: 4