(Marks)

(12) 1. Consider the curve given by the equations

$$x = t - 2t^2 \quad \text{and} \quad y = t^2 + 3t$$

- (a) Find the t-values and the coordinates of the x-intercepts.
- (b) Find $\frac{dy}{dx}$. Use $\frac{dy}{dx}$ to sketch the graph of the curve between the x-intercepts.
- (c) Find the area bound by the curve and the x-axis.
- (d) Set up, but do not evaluate, an integral that gives the arc length of the curve between the x-intercepts.
- (7) 2. (a) Sketch the graphs of $r = 1 + \cos \theta$ and $r = 3 \cos \theta$, on the same axes.
 - (b) Find the area of the region that lies outside the cardioid $r = 1 + \cos \theta$ and inside the circle $r = 3\cos \theta$.
- (9) 3. (a) Find the Maclaurin series for $\int_0^x \frac{t^2 dt}{1 + t^4}$.
 - (b) What is the interval of convergence for this power series?
 - (c) Use the answer to 3(a) to approximate $\int_0^{1/2} \frac{t^2 dt}{1+t^4}$ to within an error of $\pm 10^{-4}$. (Justify your approximation.)
- (6) 4. (a) Find the Maclaurin series for $\frac{x \sin x}{r^3}$.
 - (b) Use the series (from 4(a)) to calculate the limit $\lim_{x\to 0} \frac{x-\sin x}{x^3}$. Verify your answer using L'Hôpital's rule.
- (6) 5. For the surface $x \tan z = y$ find the equation of the tangent plane at the point $P_0(1, 1, \frac{\pi}{4})$. Find the parametric equations for the normal line through the same point P_0 .
- (6) 6. Let $f(x, y, z) = x e^{yz}$.
 - (a) Find the directional derivative of f in the direction i + k at the point $P_0(2, 0, -4)$.
 - (b) Find the direction in which f is decreasing at a maximal rate at the same point P_0 , and what is the rate of the decrease in that direction?
- (10) 7. A curve is defined by $r(t) = \langle t^2, \sin t t \cos t, \cos t + t \sin t \rangle$, t > 0. Find the unit tangent and unit normal vectors T, N, and the curvature κ . Find the tangential and normal components of acceleration a_T, a_N .
- (7) 8. Let u = u(x, y), $x = r \cos \theta$, $y = r \sin \theta$. Show that

$$\left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2 = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2$$

- (7) 9. Find and classify the critical points of $f(x,y) = x^3 3xy + y^3$.
- (8) 10. Use two Lagrange Multipliers to find the maximum value of f(x, y, z) = xy + yz on the line of intersection of the two planes x + 2y = 6 and x 3z = 0 (i.e. subject to the constraints imposed by those two equations).

(Marks)

(15) 11. Evaluate the following.

(a)
$$\int_0^2 \int_{y^2}^4 \frac{\sin x}{\sqrt{x}} dx dy$$

(b)
$$\int_0^1 \int_0^{\sqrt{1-y^2}} e^{x^2+y^2} dx dy$$

(c)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \sqrt{x^2+y^2+z^2} dz dy dx$$

(7) 12. Find the volume of the solid bounded by y=x, y=2, x=0, the xy-plane, and $z=4-y^2$.