CALCULUS III

FINAL EXAMINATION FALL 1997

Kishore Anand

INSTRUCTIONS:

1 ATTEMPT ANY 12 (of 13) PROBLEMS.

Indicate clearly which problem should not be marked.

- 2 Each complete question caries equal weight.

2 Each complete question caries equal weight.

3 You may assume the following:

For all
$$x: \sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$
 $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$ $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$

For $|x| < 1: \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$

ATTEMPT ANY 12 (COMPLETE) PROBLEMS

- 1 Obtain the Maclaurin series for $f(x) = \frac{1}{2}\sin 2x$ by :
- a substitution in the Maclaurin expansion for $\sin x$.
- **b** multiplying the series expansions of $\sin x$ and $\cos x$ (first four non-zero terms only)

(since $\sin 2x = 2\sin x \cos x$)

1c OPTIONAL (BONUS 5%)

Use any other method other than those of a and b above to obtain the Maclaurin series for $f(x) = \frac{1}{2}\sin 2x$.

- **2** Approximate $\int_0^1 e^{-x^2} dx$ to 6 decimal places.
- **3a** Establish a Maclaurin series expansion for $f(x) = \ln(1+x^2)$ **b** Find $f^{(7)}(0)$.
- 4 Given $r = 2 2\sin\theta$; $r = 2\sin\theta$
- a Sketch both graphs on the same set of axes.
- **b** Find all points of intersection.
- **c** Write an integral for the area of the region common to both.

DO NOT ATTEMPT TO EVALUATE THE INTEGRAL.

- 5 Consider the space curve $\overrightarrow{R}(t) = (2\cos t, 2\sin t, t)$
- **a** Draw a rough sketch of the curve. $(0 \le t \le 2\pi)$
- **b** Calculate the arc length. $(0 \le t \le 2\pi)$
- **c** Find \hat{T} , \hat{N} , a_T , a_N and κ .
- 6 The period T of a simple pendulum of length l and gravitational constant gis computed using the formula $T = 2\pi \sqrt{\frac{l}{a}}$ l was measured as $5.00 \pm .15 \ metres$

q has been determined $9.75 \pm .10 \ metres$

Using DIFFERENTIALS $% \left(T\right) =T\left(T\right) =T\left(T\right)$, estimate the maximum possible error in T .

- 7 Determine the minimum distance from (1,-1,1) to the sphere $x^2+y^2+z^2=\frac{1}{3}$.
- 8 Find and classify all the critical points of $f(x,y) = x^3 + y^3 3x 12y + 20$
- 9 w = f(u) + g(v); u = x at; v = x + atShow that: $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2}$
- 10 Write integrals for the volumes of the following regions:

DO NOT ATTEMPT TO EVALUATE THE INTEGRALS

- **a** the region enclosed by $z = x^2 + y^2$ and $z = 18 x^2 y^2$
- **b** the region bounded by the planes z = 0, z = x + y, y = 2x y = 2 and x = 0.
- **11** Evaluate $\int_0^1 \int_x^1 x \sin(y^3) dy dx$ (Hint: Reverse the order of integration.)
- 12 Find the centroid of the homogenous solid region [(shaped like an ice cream cone (1 scoop)] bounded by the sphere $x^2 + y^2 + z^2 = R^2$ and the cone $z = \sqrt{x^2 + y^2}$.
- 13 Establish a formula for the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Hint: Start with a double integral and the transformation $u = \frac{x}{a}$, $v = \frac{y}{b}$.