Calculus III Final Examination

Kishore Anand, Umaneth Tiwari

May 20^{th} , 1997

Exhibit your work. You may assume the following:

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} , \cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
, $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$

- 1. Establish a power series representation for $y = \arctan x$. (6%)
- 2. Consider $f(x) = \int_0^x \sin(t^2) dt$

(a) Represent
$$f(x)$$
 as a power series. (7%)

(b) Compute
$$f^{(7)}(0)$$
. (3%)

(c) Estimate
$$f(1)$$
 to 3 decimal places. (5%)

- 3. Find the first four non-zero terms of the Maclaurin series for $y = e^x \cos x$ (5%)
- 4. Draw a rough sketch of the polar curve $r = 1 2\cos\theta$. Find analytically two (distinct) points at which the tangent is horizontal. (8%)
- 5. Write integrals for each of the following:

DO NOT ATTEMPT TO SOLVE THE INTEGRALS

(a) The perimeter of the hypocycloid
$$x = \cos^3 \theta \ y = \sin^3 \theta \ \theta \in [0, 2\pi]$$
 (3%)

- (b) The area of one petal of the rose $r = 3\cos(3\theta)$ (3%)
- (c) the volume of the solid region above the XY plane which lies inside the sphere $x^2 + y^2 + z^2 = 4$ and outside the cylinder $x^2 + y^2 = 1$ in
 - (a) rectangular coordinates. (2%)
 - (b) cylindrical coordinates. (2%)
 - (c) spherical coordinates. (2%)
- 6. Consider a particle moving on a circular path of radius b $\overrightarrow{R}(t) = (b\cos\omega t, b\sin\omega t) \text{ where } \omega = \frac{d\theta}{dt} \text{ is the constant}$ angular velocity.
 - (a) Find the velocity vector and show that it is orthogonal to $\overrightarrow{R}(t)$. (3%)
 - (b) Find the speed of the particle. (2%)
 - (c) Find the magnitude of the acceleration vector. (2%)
 - (d) Demonstrate that the acceleration vector is always directed toward the centre of the circle. (2%)
 - (e) Compute the curvature. (3%)
- 7. w = f(x, y) has continuous partial derivatives . Suppose that we substitute the polar coordinates r and θ .

Prove
$$\frac{1}{r}\frac{\partial w}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta$$
. (3%)

8. Find a unit vector in the direction in which $f(x, y) = \cos \pi xy + xy^2$ increases most rapidly at $(\frac{1}{2}, \mathbf{1})$ (3%)

- 9. Find the extreme value(s) of the function $f(x,y) = xy x^2 y^2 2x 2y + 4 \tag{5\%}$
- 10. Find the (relative) maximum and minimum values of $f(x,y) = x^2y$ on the line x + y = 3. USE LAGRANGE MULTIPLIERS (7%)
- 11. Compute the volume of the tetrahedron in the first octant bounded by the coordinate planes and the plane 6x + 3y + 3z = 6. (6%)
- 12. Evaluate $\int_0^1 \int_y^1 \frac{\sin x}{x} dx dy$ (5%)
- 13. Calculate the volume of the region enclosed by the cylinder $x^2 + y^2 = 4$ and also bounded above by the paraboloid $z = x^2 + y^2$ and below by the XY plane. (5%)
- 14. Calculate $\iint_E z^2 dx dy dz$ where E is the solid region $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16} \le 1 \tag{8\%}$