1. (6 points) Evaluate the following expressions.

(a)
$$(2-3)^5 - 5(9-3^2) + 36^0$$

(b)
$$(4-6)^3 \div \frac{1-(-3)}{1+3(1^2-2)} - \frac{4}{5}$$

(c)
$$\frac{1-2^2}{2^3-3^2} \div \left| \frac{5-(-2)^2}{1-9} \right| + 4$$

2. (4 points) Expand and simplify the following expressions.

(a)
$$(2x-3)(4x^2+6x+9)-(2x)^3$$

(b)
$$(2t-3s)(2t+3s)-4(t-2)^2$$

- **3.** (2 points) A tumble dryer is sold at a 20% discount for \$640. What was the original selling price of the dryer? [Recall: Selling Price=Original Price Original Price · Discount Rate]
- **4.** (2 points) What was the initial sum deposited to my 1.2% Tax-Free Savings Account if I gained \$3000 in simple interest over the last ten years? [Recall: $I = P \cdot r \cdot t$]
- **5.** (2 points) A toaster oven is sold for \$26 in a store that marks up small kitchen appliances by 30%. What was the original price of the toaster oven? [Recall: Selling Price=Cost + Cost · Markup Rate]
- **6.** (6 points) Solve the following equations.

(a)
$$\frac{x+3}{7} = \frac{x}{4} - 3$$

(b)
$$5(a+1) - 3(2-a) = 1 + 2(a+4) + 4(2a-3)$$

(c)
$$(t-3)(t+1) = t^2 + t - 3$$

- 7. (3 points) Consider the line that passes through the points (-5,2) and (1,3).
 - (a) Find the slope of the line.
 - (b) Find the equation of the line.
 - (c) Find the x-intercept of the line.
- **8.** (5 points) Consider the line passing through the point (2,1) and parallel to 2x + y = 7.
 - (a) Find the equation of the line.
 - (b) Sketch both lines in the same coordinate system.
- 9. (3 points) Solve the following linear system by the method of substitution.

$$\begin{cases} 2x + 3y = 11 \\ 5x - y = 7 \end{cases}$$

10. (3 points) Solve the following linear system by the method of elimination.

$$\begin{cases} 4x + 3y = 4 \\ 2x - 6y = -3 \end{cases}$$

- 11. (4 points) Simplify each of the following expressions and present the result without negative exponents. You may assume that all variables are positive.
 - (a) $(2ab^{-2}c^1)^3 (4b^2c^{-1})^{-1} =$
 - (b) $\left(\frac{30x^2y^{-2}z^3}{45z^0x^{-1}y^5}\right)^{-2} =$
- 12. (4 points) Factor each polynomial completely.
 - (a) $2x^2 7x 15$
 - (b) $a^2 8a^5$
- 13. (3 points) Solve the equation $\sqrt{5x-1} = x+1$ or show that it has no solutions.
- 14. (6 points) Solve the following equations for x by factoring.
 - (a) (2x+1)(x+1) = 28
 - (b) $x^3 + 2x^2 + 1 = x^4 + 1$
 - (c) $x^3 4x^2 9x + 36 = 0$
- 15. (3 points) By taking square roots, find all solutions to $16(5x-1)^2-2^2=0$.
- 16. (3 points) By completing the square, find all solutions to $x^2 + 10x + 23 = 0$.
- 17. (3 points) By using the Quadratic Formula, find all solutions to $2x^2 5 = 8x$.
- 18. (8 points) Simplify each of the following expressions. You may assume that all variables are positive.
 - (a) $\sqrt{50} \sqrt{18} + 3\sqrt{8}$
 - (b) $(3\sqrt{3} \sqrt{20})(3\sqrt{5} + \sqrt{12})$
 - (c) $\sqrt{30x^6y^5z^1}$
 - (d) $\sqrt{\frac{12a^{-4}b^2}{27a^4b^{-1}}}$
- 19. (4 points) Rationalize the denominator of each expression and simplify.
 - (a) $\frac{7\sqrt{12}}{10 2\sqrt{3}}$
 - (b) $\frac{4}{x \sqrt{x^2 + 2}}$
- 20. (3 points) Evaluate the following logarithms.
 - (a) $\log_2(32)$
 - (b) $\ln(e^{-2})$
 - (c) $\log_4\left(\frac{1}{64}\right)$

- **21.** (4 points) Solve each equation for x.
 - (a) $2^{3x-5} + 2^4 = 2^5$
 - (b) $\frac{1}{3^{x-5}} = 27$
- **22.** (2 points) Find the exact value of x and y in the right triangle below.

- 23. (3 points) If $\sec \theta = \frac{4}{\sqrt{3}}$ for the acute angle θ in a right triangle, find the exact values of the other five trigonometric functions.
- **24.** (2 points) Find the midpoint between the points (3,4) and (2,-2).
- **25.** (2 points) Find the distance between the points (2, -2) and (3, 2).
- **26.** (2 points) Which of the following are graphs of relations for which y is function of x?

- 27. (4 points) Given $f(z) = z^3 5z + 2$, evaluate and simplify the following expressions.
 - (a) f(-2)
 - (b) $f\left(\frac{2}{3}\right)$
 - (c) $f\left(\sqrt{2}\right)$
 - (d) f(z+h)
- **28.** (4 points) Given the graph y = f(x) of a function f(x), find

- (a) the domain of f(x):
- (b) the range of f(x):
- (c) the x-intercepts:
- (d) the *y*-intercept:
- (e) the intervals where f(x) is positive:
- (f) the intervals where f(x) is negative:
- (g) the local minima of f(x):
- (h) the local maxima of f(x):

Answers

1. (a) 0 (b)
$$\frac{16}{5}$$
 (c) 28 **2.** (a) -27 (b) $-9s^2 + 16t - 16$ **3.** 800\$ **4.** 25000\$ **5.** 20

6. (a)
$$x = 32$$
 (b) $a = 1$ (c) $t = 0$ **7.** (a) $\frac{1}{6}$ (b) $y = \frac{1}{6}x + \frac{17}{6}$ (c) $(-17, 0)$

8. (a)
$$y = -2x + 5$$
 (b) **9.** $x = \frac{32}{17}, y = \frac{41}{17}$ **10.** $x = \frac{1}{2}, y = \frac{2}{3}$

11. (a)
$$\frac{2a^3c^4}{b^8}$$
 (b) $\frac{9y^{14}}{4x^6z^6}$ **12.** (a) $(2x+3)(x-5)$ (b) $a^2(1-2a)(1+2a+4a^2)$ **13.** $x=1, x=2$

14. (a)
$$x = 3$$
, $x = -\frac{9}{2}$ (b) $x = -1$, $x = 0$, $x = 2$ (c) $x = -3$, $x = 3$, $x = 4$ **15.** $x = \frac{3}{10}$, $x = \frac{1}{10}$

16.
$$x = -5 + \sqrt{2}$$
, $x = -5 - \sqrt{2}$ **17.** $x = 2 + \frac{\sqrt{26}}{2}$, $x = 2 - \frac{\sqrt{26}}{2}$

18. (a)
$$8\sqrt{2}$$
 (b) $-12+5\sqrt{15}$ (c) $x^3y^2\sqrt{30yz}$ (d) $\frac{2b\sqrt{b}}{3a^4}$ **19.** (a) $\frac{35\sqrt{3}+21}{22}$ (b) $-2(x+\sqrt{x^2+2})$

20. (a) 5 (b) -2 (c) -3 **21.** (a)
$$x = 3$$
 (b) $x = 2$ **22.** $x = \frac{5\sqrt{3}}{3}$, $y = \frac{10\sqrt{3}}{3}$

23.
$$\sin \theta = \frac{\sqrt{13}}{4}$$
, $\cos \theta = \frac{\sqrt{3}}{4}$, $\tan \theta = \frac{\sqrt{39}}{3}$, $\csc \theta = \frac{4\sqrt{13}}{13}$, $\cot \theta = \frac{\sqrt{39}}{13}$ **24.** $\left(\frac{5}{2}, 1\right)$ **25.** $\sqrt{17}$

26. functions: (a) and (d) **27.** (a) 4 (b)
$$-\frac{28}{27}$$
 (c) $-3\sqrt{2}+2$ (d) $z^3+3z^2h+3zh^2+h^3-5z-5h+2$

28. (a)
$$[-4,4]$$
 (b) $[-2,2]$ (c) $(-2,0)$ and $(1,0)$ (d) $(0,-1)$ (e) $[-4,-2)$ and $(1,4]$ (f) $(-2,1)$ (g) $x=-1$, $f(-1)=-2$ (h) $x=-3$, $f(-3)=2$ and $x=3$, $f(3)=2$