- 1. Evaluate the following expressions.
- (a)  $6(7-2^2) + (-1)^5 + 3^0 + (1-2)^2$
- (b)  $\frac{10}{3} \frac{1-3}{4+2} \div (5-1^2)$
- (c)  $\frac{-3^2-4}{5-6} \div \left| \frac{7-(-4)^2}{3} \right| + \frac{5}{3}$
- 2. Expand and simplify the following algebraic expressions.
- (a)  $(3x-2)^2 + (x^2+4)(3-x)$
- (b) (2s+t)(2s-t)+[t+2(s+1)]t-2ts
- 3. An electronic store uses a markup rate of 60% on all items. The cost of a CD player is \$45. What is the selling price of the CD player? Recall: Selling Price =  $Cost + Cost \cdot Markup$  Rate
- 4. You invested \$1000 in corporate bonds that earned \$475 in interest after 5 years. What was the simple interest rate? Recall: I = Prt
- 5. Solve each equation for x.
- (a) 2(x+3) 5(2-x) = 3(x+4) + 2(2x+1)
- (b)  $3\left(\frac{x}{2} \frac{1}{6}\right) = \frac{1}{9} \frac{x}{3}$
- (c)  $x + x^2 = (x+2)(x-1) + 2$
- 6. Consider the line that passes through the points (-4, -1) and (2, 6).
- (a) Find the slope of the line.
- (b) Find an equation for the line.
- (c) Find the x-intercept of the line.
- 7. Let  $f(x) = 2x^3 5x + 3$ .

  - (a) Evaluate f(3). (b) Evaluate  $f(-\frac{1}{2})$ .
- 8. Which of the following graphs represent a function of x?









- 9. Consider the line that passes through the point (15, -3) and is perpendicular to the line 5x 3y = 0.
  - (a) Find an equation for the line.
- (b) Sketch the line.

10. Simplify each of the following expressions and express the result without using negative exponents. Assume that each variable is not zero.

(a) 
$$\left(\frac{12a^{-2}b^4}{20a^{-1}b}\right)^{-1}$$
 (b)  $\left(-3x^{-3}y^3\right)^2 \left(2x^{-1}y^3\right)^{-2}$ 

- 11. Factor each polynomial completely.
- (a)  $27x^3 1$
- (b)  $6x^2 5x 4$
- 12. Solve the equation  $x = \sqrt{3x+16}-2$  for x, or show that the equation has no solutions.
- 13. Solve the following equations for x by factoring.
- (a)  $7x^2 36x = x^2$
- (b) x(x+1) = 12
- (c)  $x^3 4x^2 x + 4 = 0$
- 14. By taking square roots, find the solution(s) to  $7(3x-2)^2 28 = 0$ .
- 15. By completing the square, find the solution(s) to  $x^2 14x 1 = 0$ .
- 16. Using the Quadratic Formula, find the solution(s) to  $2x^2 = 4x + 3$ .
- 17. (3 points) Solve the system by the method of substitution.

$$\begin{cases} 5x + 2y = -11\\ 2x + y = -4 \end{cases}$$

18. Solve the system by the method of elimination.

$$\begin{cases} 3x + 10y = 2\\ 2x + 7y = 1 \end{cases}$$

- 19. Simplify each of the following expressions. Assume that x, y > 0.
- (a)  $-2\sqrt{27} + 5\sqrt{48} + 4\sqrt{3}$
- (b)  $(2\sqrt{5} \sqrt{3})(\sqrt{5} + 4\sqrt{3})$
- (c)  $\sqrt{80x^4y^7}$
- (d)  $\sqrt{\frac{36x^{-3}y}{3x^{-5}y^{-7}}}$
- 20. Rationalize the denominator of each expression and simplify the result. Assume that x > 0.
- (a)  $\frac{2\sqrt{3}}{\sqrt{5}-1}$
- (b)  $\frac{10x}{\sqrt{2x^3}}$

- 21. Evaluate each logarithm.
- (a)  $\log_4 \frac{1}{16}$
- (b)  $\ln e^3$
- 22. Solve each equation for x.
- (a)  $4e^{3x} 5 = 27$
- (b)  $5^{2x-3} = \frac{1}{25}$
- 23. Given  $\sec \theta = \sqrt{2}$ , find the acute angle  $\theta$ .
- 24. Let  $\theta$  be an acute angle in a right triangle such that  $\cos \theta = \frac{\sqrt{5}}{3}$ . Find the exact values of the other five trigonometric functions.
- 25. Find the exact value of x and y in the triangle below.



- 26. Given the points A(4,3) and B(2,6).
- (a) Determine the midpoint between A and B.
- (b) Determine the distance between A and B.
- 27. Give the domain, range, intercepts, sign (where f is positive/negative) and extrema (local max/min) of the function f whose graph is displayed below.



## Answers

**1.** (a) 19 (b) 
$$\frac{41}{12}$$
 (c) 6 **2.** (a)  $-x^3 + 12x^2 - 16x + 16$  (b)  $4s^2 + 2t$ 

**3.** \$72 **4.** 9.5% **5.** (a) No solution (b) 
$$\frac{1}{3}$$
 (c) All real numbers

**6.** (a) 
$$m = \frac{7}{6}$$
 (b)  $y = \frac{7}{6}x + \frac{11}{3}$  (c)  $(\frac{-22}{7}, 0)$  **7.** (a) 42 (b)  $\frac{21}{4}$ 

**8.** b. and d. **9.** (a) 
$$y = \frac{-3}{5}x + 6$$
 **10.** (a)  $\frac{5a}{3b^3}$  (b)  $\frac{9}{4x^4}$ 

**11.** (a) 
$$(3x-1)(9x^2+3x+1)$$
 (b)  $(2x+1)(3x-4)$  **12.**  $x=3$ 

**13.** (a) 
$$x = 0, x = 6$$
 (b)  $x = -4, x = 3$  (c)  $x = -1, x = 1, x = 4$  **14.**  $x = 0, x = \frac{4}{3}$ 

**15.** 
$$x = 7 \pm 5\sqrt{2}$$
 **16.**  $x = 1 \pm \frac{\sqrt{10}}{2}$  **17.**  $(-3, 2)$  **18.**  $(4, -1)$ 

**19.** (a) 
$$18\sqrt{3}$$
 (b)  $-2 + 7\sqrt{15}$  (c)  $4x^2y^3\sqrt{5y}$  (d)  $2\sqrt{3}xy^4$ 

**20.** (a) 
$$\frac{\sqrt{3}(\sqrt{5}+1)}{2}$$
 (b)  $\frac{5\sqrt{2x}}{x}$  **21.** (a) -2 (b) 3

**22.** (a) 
$$x = \frac{\ln 8}{3} = \ln 2$$
 (b)  $x = \frac{1}{2}$  **23.** 45°

**24.** 
$$\sin \theta = \frac{2}{3}$$
,  $\tan \theta = \frac{2\sqrt{5}}{5}$ ,  $\csc \theta = \frac{3}{2}$ ,  $\sec \theta = \frac{3\sqrt{5}}{5}$ ,  $\cot \theta = \frac{\sqrt{5}}{2}$ 

**25.** 
$$x = 10, y = 5\sqrt{3}$$
 **26.** (a)  $(3, 4.5)$  (b)  $\sqrt{13}$  units

**27.** Domain: 
$$\mathbb{R}$$
, Range:  $[-3, \infty)$ , *x*-intercepts:  $(-6, 0)$ ,  $(-2, 0)$ ,  $(2, 0)$ ,  $(6, 0)$ , *y*-intercept:  $(0, 4)$ , Positive:  $(-\infty, -6) \cup (-2, 2) \cup (6, \infty)$ , Negative:  $(-6, -2) \cup (2, 6)$ , Local max:  $(0, 4)$ , Local min:  $(-4, -3)$ ,  $(4, -3)$