1. (6 points) Evaluate the following expressions:

(a)
$$(5-6)^7 - 3(4-2^2) + 40^0$$
;

(b)
$$(6-8)^3 \div \frac{1-(-3)}{1+2(1^2-2)} - \frac{1}{2};$$

(c)
$$\frac{1-3^2}{3^2-2^3} \div \left| \frac{6-(-2)^2}{4-5} \right| + 2.$$

- **2.** (4 points) Expand and simplify the following expressions.
 - (a) $(3x-2)(9x^2+6x+4)-(3x)^3$;
 - (b) $(4x 5y)(4x + 5y) 16(x 2)^2$;
- 3. (2 points) A stove is sold at a 20% discount for \$ 640. What was the original price of the stove?[Recall: Selling Price = Original Price Original Price · Discount Price]
- **4.** (2 points) How much (simple) interest is accumulated if \$20 is invested at 2% for 8 years? [Recall: I = PRT]
- 5. (2 points) A microwave appliance is sold for \$ 26 at a store that marks up small kitchen appliances by 30%. What was the original price of the microwave? [Recall: Selling Price = Cost + Cost · Markup Rate]
- **6.** (6 points) Solve for x in the following equations:
 - (a) $\frac{x-4}{3} \frac{x+2}{3} = \frac{x-27}{4}$
 - (b) 2(x+1) 4(2-x) = 1 + 3(x+4) + 4(2-3x)
 - (c) $x(x-2) (x+1)^2 = 3$

- 7. (3 points) Consider the line that passes through the points (5, -3) and (2, -1).
 - (a) Find the slope of the line;
 - (b) Find the equation of the line;
 - (c) Find the x intercept of the line.
- **8.** (4 points) Consider the line that passes through the point (3,1) and is perpendicular to 3x + y = 5.
 - (a) Find the equation of the line.
 - (b) Sketch **both** lines in the same coordinate system.
- 9. (3 points) Solve the following linear system by the method of substitution.

$$2x - y = 1$$

$$-x + 2y = 7$$

10. (3 points) Solve the following linear system by the method of elimination.

$$3x - 4y = 18$$

$$2x + 5y = -11$$

- 11. (4 points) Simplify each of the following expressions and present the result without negative exponents. You may assume that all variables are positive.
 - (a) $(2xy^{-3}z^2)^2(4y^2z^{-1})^{-2}$;

(b)
$$\left(\frac{10x^3y^2z^3}{25x^{-1}y^0z^3}\right)^{-2}$$
.

Mathematics 201-016-50 Algebra & Functions

12. (4 points) Factor each polynomial completely:

(a) $4x^2 - x - 3$, (b) $x^2 + 27x^5$.

Final Examination

- **13.** (3 points) Solve the equation $\sqrt{2x-1} = x+1$ or show that it has no solutions.
- **14.** (6 points) Solve the following equations by factoring:

(a) (3x-1)(x+1) = 4;

(b) $x^4 + 8 = x^3 + 8x$

(c) $x^3 - 7x^2 = 4x - 28$

- 15. (3 points) By taking square roots, find all solutions to $4(3x-1)^2-7=0$.
- **16.** (3 points) By **completing the square**, find all solutions to $x^2 + 6x + 3 = 0$.
- 17. (3 points) By using the Quadratic Formula, find all solutions to $2x^2 + 5 = 3x$.
- **18.** (8 points) Simplify each of the following expressions. You may assume that all variables are positive.

(a) $\sqrt{75} - \sqrt{12} + 2\sqrt{27}$;

(b) $(2\sqrt{2} - \sqrt{27})(2\sqrt{3} + \sqrt{8});$

(c) $\sqrt{50x^5y^7z^3}$;

(d) $\sqrt{\frac{18x^4y^2}{50x^{-3}y^{-4}}}$.

19. (4 points) Rationalize the denominator of each expression and simplify:

(a) $\frac{3\sqrt{18}}{5 - 2\sqrt{2}}$;

(b) $\frac{3}{x-\sqrt{x^2+20}}$.

20. (3 points) Evaluate the following logarithms:

(a) $\log_3 81$;

(b) $\ln(e^{-3});$

(c) $\log_3 \frac{1}{27}$.

21. (4 points) Solve each equation for x:

(a) $3^{2x-1} + 54 = 81$;

(b) $\frac{1}{2^{x-4}} = 32$

22. (2 points) Find the exact values of x and y in the triangle below:

- **23.** (3 points) If $\csc \theta = \frac{5}{\sqrt{3}}$ for an acute angle in a triangle, find the exact values of the other five trigonometric functions.
- **24.** (2 points) Find the midpoint between the points (-2,3) and (6,-2).

- 25. (2 points) Find the distance between the points (3,5) and (2,7).
- **26.** (2 points) Which of the following curves are graphs of relations for which y is a function of x:

a)

b)

- **27.** (5 points) Given $f(x) = x^2 3x + 4$ evaluate and simplify the following expressions
 - (a) f(-1); (b) $f(\frac{2}{3})$; (c) $f(\sqrt{3})$;
 - d) f(x+h).
- **28.** (4 points) For the function f, whose graph is given below, answer the following questions:

- (a) the domain of f(x);
- (b) the range of f(x);
- (c) the x-intercept(s);
- (d) the y-intercept;
- (e) the interval(s) the the function is positive;
- (f) the interval(s) the the function is negative;
- (g) the local minima of f(x);
- (h) the local maxima of f(x);

Answers:

1. a) 0, b)
$$3/2$$
 c) -2 ,

2. a)
$$-8$$
, b) $-25y^2 + 64x - 64$,

6. a)
$$x = 19$$
, b) $x = 9/5$ c) $x = -1$;

7. a)
$$m = -2/3$$
, b) $y = -2/3x + 1/3$ c) $(1/2, 0)$;

8. a)
$$y = \frac{1}{3}x$$
, b)

10.
$$(2, -3);$$

11. a)
$$\frac{x^2z^6}{4y^{10}}$$
, b) $\frac{25}{4x^8y^4}$;

12. a)
$$(x-1)(4x+3)$$
, b) $x^2(1+3x)(1-3x+9x^2)$;

14. a)
$$x = -5/3$$
, $x = 1$ b) $x = 2$, $x = 1$, c) $x = -2$, $x = 2$, $x = 7$;

15.
$$x = \frac{2 - \sqrt{7}}{6}, x = \frac{2 + \sqrt{7}}{6};$$

16.
$$x = -3 - \sqrt{6}$$
, $x = -3 + \sqrt{6}$;

17. No solutions;

18. a)
$$9\sqrt{3}$$
, b) $-10 - 2\sqrt{6}$, c) $5x^2y^3z\sqrt{2xyz}$, d) $\frac{3x^3y^3\sqrt{x}}{5}$;

19. a)
$$\frac{9\sqrt{2}(5+2\sqrt{2})}{17}$$
, b) $\frac{-3(x+\sqrt{x^2+20})}{20}$;

20. a) 4, b)
$$-3$$
; c) : -3 ;

21. a)
$$x = 2$$
, b) $x = -1$;

22.
$$x = 3/2$$
 and $x = 3\sqrt{3}/2$

23.
$$\sin \theta = \sqrt{3/5}$$
, $\cos \theta = \sqrt{22/5}$, $\tan \theta = \sqrt{66/22}$, $\sec \theta = 5\sqrt{22/22}$ and $\cot \theta = \sqrt{66/3}$,

24.
$$M(2,1/2)$$

25.
$$d = \sqrt{5}$$

27. a) 8, b)
$$22/9$$
, c) $7 - 3\sqrt{3}$, d) $x^2 + 2xh + h^2 - 3x - 3h + 4$;

28. a)
$$[-4, 4]$$
, b) $[-3, 4]$, c) $(-2, 0)$, $(1, 0)$, d) $(0, -3)$, e) $[-4, -2) \cup (1, 4]$, f) $(-2, 1)$, g) $f(0) = -3$, h) $f(2) = 4$.