- 1. (6 points) Evaluate the following expressions.
 - (a) $-3(7-9)^3 (3-5)^2(2+3^1) + 5^0$
 - (b) $\frac{(22-32)^2}{|-3\cdot 2\cdot 10+2\cdot 5|} + \left|\frac{11-8\cdot 11}{11}\right| \frac{7^0(4-6)}{2}$
 - (c) $\frac{3-5^{(3-2)}}{2\cdot 2^2} \div \frac{5-(-2)^3}{5^2+3^2}$
- **2.** (4 points) Expand and simplify the following expressions.
 - (a) $-(3x (4+5x))^2 + \frac{3}{4}(8-12x)$
 - (b) 5(2x(x+1)-(3-x))-2(3x-1)(3x+1)
- 3. (2 points) A coffee grinder is sold at a store where small appliances are marked up by 15%. If the selling price is \$23, what was the original price of the coffee grinder? [Recall: Selling Price=Original Price + Original Price · Markup Rate]
- 4. (2 points) What was the principal amount deposited to my account if it earned \$1200 in 6 years in simple interest at an annual interest rate of 4%? [Recall: $I = P \cdot r \cdot t$]
- **5.** (6 points) Solve for x in the following equations.
 - (a) 2(6x+1) = 8(x+1) 2(1-2x)
 - (b) $\frac{x}{3} \frac{x+2}{8} + \frac{x+3}{6} = \frac{2-x}{4}$
 - (c) $(x+5)^2 = (x-3)(x+3) + 8x$
- **6.** (4 points) Consider the points A(-3,4) and B(-5,-2).
 - (a) Find the equation of the line that passes through the points A and B.
 - (b) Find the midpoint between the points A and B.
 - (c) Find the distance between the points A and B.
 - (d) Find the horizontal line that passes through the point B.

- 7. (4 points) Consider the line that passes through the point (-2,3) and perpendicular to 2x-y+7=0.
 - (a) Find the equation of the line.
 - (b) Sketch both lines in the same coordinate system.
- 8. (3 points) Solve the following linear system by the method of substitution.

$$\begin{cases} -4x + 9y = 9\\ x - 3y = -6 \end{cases}$$

9. (3 points) Solve the following linear system by the method of elimination.

$$\begin{cases} 3x - 2y = 2\\ 5x - 5y = 10 \end{cases}$$

- 10. (4 points) Simplify each of the following expressions. You may assume that all variables are positive. Present the result without negative exponents.
 - (a) $-(3x^3y^{-2}z^4)^3(2xy^3z^0)^{-2} =$

(b)
$$\left(\frac{-3x^{-4}y^2z^3}{21x^3z^2}\right)^{-2} =$$

- 11. (4 points) Factor each polynomial completely.
 - (a) $7x^2 5x 2$
 - (b) $3x^4 + 9x^3 + 6x^2$
- **12.** (3 points) Solve the equation $\sqrt{2x-7} = x-3$ or show that it has no solutions.
- 13. (6 points) Solve the following equations for x by factoring.
 - (a) $3x^2 + 8 = 10x$
 - (b) $x^3 9x + 18 = 2x^2$
- **14.** (3 points) By taking square roots, find all solutions to $36 \left(\frac{3x-2}{2} \right)^2 9 = 0$.
- **15.** (3 points) By completing the square, find all solutions to $x^2 8x + 21 = 6$.

- **16.** (3 points) By using the Quadratic Formula, find all solutions to $5x^2 + 9x = -4$.
- 17. (8 points) Simplify each of the following expressions. You may assume that all variables are positive. Present the result without negative exponents.
 - (a) $4\sqrt{18} + 6\sqrt{12} 6\sqrt{27}$
 - (b) $(3\sqrt{2} + 4\sqrt{5})(\sqrt{2} 3\sqrt{5})$
 - (c) $\sqrt{3200x^{13}y^9z^{11}}$
 - (d) $\sqrt{\frac{50x^3y^{-4}}{180x^{-4}y^{-8}}}$
- **18.** (4 points) Rationalize the denominator of each expression and simplify.
 - (a) $\frac{3}{\sqrt{5} \sqrt{3}}$
 - (b) $\frac{5\sqrt{2}}{3\sqrt{7}}$
- **19.** (4 points) Evaluate the following expression: $\log_4{(64)} \ln(e^2) + \log_3{\left(\frac{1}{27}\right)}$
- **20.** (4 points) Solve each equation for x.
 - (a) $3^{2x-1} + 6 = 3^2$
 - (b) $\frac{3}{2^{x-5}} = 12$
- **21.** (2 points) Find the exact values of x and y in the right triangle below.

- **22.** (3 points) If $\csc \theta = \frac{\sqrt{7}}{2}$ for the acute angle θ in a right triangle, find the exact values of the other five trigonometric functions.
- **23.** (2 points) Find the exact value of the following expression: $\sec 45^{\circ} \sin 60^{\circ}$.
- **24.** (2 points) Which of the following are graphs of relations for which y is function of x?

- **25.** (5 points) Given $f(x) = x^2 3x + 1$ and $g(x) = \frac{3}{2}x + \frac{1}{2}$, evaluate and simplify the following expressions.
 - (a) $\frac{g(1)}{f(5)} =$
 - (b) $f(\sqrt{2}) g(-1) =$
 - (c) f(x+h) =

26. (6 points) Given the graph y = f(x) of a function f(x), find

- (a) the domain of f(x):
- (b) the range of f(x):
- (c) the x-intercepts:
- (d) the y-intercept:
- (e) the local minima of f(x):
- (f) the local maxima of f(x):

Answers.

1. (a) 5 (b) 10 (c)
$$-\frac{17}{26}$$

2. (a)
$$-4x^2 - 25x - 10$$
 (b) $-8x^2 + 15x - 13$

- **3.** \$20
- **4.** \$5000

5. (a) No solution (b)
$$x = \frac{2}{5}$$
 (c) $x = -17$

6. (a)
$$y = 3x + 13$$
 (b) $(-4, 1)$ (c) $2\sqrt{10}$ (d) $y = -2$

7. (a)
$$y = -\frac{1}{2}x + 2$$
 (b)

8.
$$x = 9, y = 5$$

9.
$$x = -2, y = -4$$

10. (a)
$$-\frac{27x^7z^{12}}{4y^{12}}$$
 (b) $\frac{49x^{14}}{y^4z^2}$

11. (a)
$$(7x+2)(x-1)$$
 (b) $3x^2(x+1)(x+2)$

12.
$$x = 4$$
 (checks)

13. (a)
$$x = 2$$
, $x = \frac{4}{3}$ (b) $x = -3$, $x = 3$, $x = 2$

14.
$$x = \frac{1}{3}, x = 1$$

15.
$$x = 3, x = 5$$

16.
$$x = -1, x = -\frac{4}{5}$$

17. (a)
$$12\sqrt{2} - 6\sqrt{3}$$
 (b) $-54 - 5\sqrt{10}$ (c) $40x^6y^4z^5\sqrt{2xyz}$ (d) $\frac{x^3y^2\sqrt{10x}}{6}$

18. (a)
$$\frac{3\sqrt{5}+3\sqrt{3}}{2}$$
 (b) $\frac{5\sqrt{14}}{21}$

19.
$$3-2+(-3)=-2$$

20. (a)
$$x = 1$$
 (b) $x = 3$

21.
$$x = \frac{7}{2}, y = \frac{7\sqrt{3}}{2}$$

22.
$$\sin \theta = \frac{2\sqrt{7}}{7}$$
, $\cos \theta = \frac{\sqrt{21}}{7}$, $\tan \theta = \frac{2\sqrt{3}}{3}$ $\csc \theta = \frac{\sqrt{7}}{2}$, $\sec \theta = \frac{\sqrt{21}}{3}$, $\cot \theta = \frac{\sqrt{3}}{2}$

23.
$$\sqrt{2} - \frac{\sqrt{3}}{2} = \frac{2\sqrt{2} - \sqrt{3}}{2}$$

25. (a)
$$\frac{2}{11}$$
 (b) $4-3\sqrt{2}$ (c) $x^2+2xh+h^2-3x-3h+1$

26. (a)
$$[-3,4]$$
 (b) $[-4,3]$ (c) $(-3,0), (-1,0), (3,0)$ (d) $(0,-3)$ (e) $(1,-4)$ (f) $(-2,2)$