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0 Introduction

Linear logic was introduced by Girard [G87] as a consequence of his anal-
ysis of the traditional connectives of logic into more primitive connectives,
The resulting logic is more resource sensitive; this is achieved by placing
strict control over the structural rules of contraction and weakening, in-
troducing a new “modal” operator OF COURSE (denoted !) to indicate
when a formula may be used in a resource-insensitive manner—i.e. when
a resource is renewable. Without the ! operator, the essence of linear
logic is carried by the multiplicative connectives; at its most basic level,
linear logic is a logic of monoidal-closed categories (in much the same way
that intuitionistic logic is a logic of cartesian-closed categories). In mod-
elling linear logic, one begins with a monoidal-closed category, and then
adds appropriate structure to model linear logic’s additional features. To
model linear negation, one passes to the *-autonomous categories of Barr
[B79]. To model the additive connectives, one then adds products and
coproducts. Finally, to model the exponentials, and so regain the expres-
sive strength of traditional logic, one adds a triple and cotriple, satisfying
properties to be outlined below. This program was first outlined by Seely
in [Se89].

Linear logic bears strong resemblance to linear algebra (from which it
derives its name), but one significant difference is the difficulty in mod-
elling !. The category of vector spaces over an arbitrary fleld is a sym-
metric monoidal closed category, indeed in some sense the prototypical
monoidal category, and as such provides a model of the intuitionistic vari-
ant of multiplicative linear logic. Furthermore, this category has finite
products and coproducts with which to model the additive connectives. It
thus makes sense to look for models of various fragments of linear logic in
categories of vector spaces. However, modelling the exponentials is more
problematic. It is the primary purpose of this paper to present methods of
modelling exponential types in categories arising from linear algebra. We
study models of the exponential connectives in categories of linear spaces
which have monoidal (but generally not monoidal-closed) structure. (We
shall also include a model in finite-dimensional vector spaces.)

To model the finer distinctions achieved by linear logic, one ought to
consider vector spaces enriched with appropriate additional structure. For
example, to model linear negation, one considers vector spaces enriched
with an additional topological structure. These are the linear topologies
of Lefschetz and Barr [Ledl, B76a]. The relationship to linear logic is
discussed in [Bl93a]. To model the noncommutative [Ab91] or braided
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[B193b] variants of linear logic, one considers the linear representations
of certain Hopf algebras [Bl93a]. Finally, to model the exponentials, it is
necessary to consider normed vector spaces.

Vector spaces are inherently finitary structures in the sense that every
vector is a finite sum of multiples of basis vectors, and one is allowed only
to take finite sums of vectors. To model the notion of infinitely renewable
resources, one would like to be able to take infinite sums of vectors. But to
do this, one needs a notion of convergence, and to define convergence one
needs a notion of topology. The most heavily studied topological vector
spaces are Hilbert and Banach spaces which derive their topologies from a
norm; either defined indirectly via an inner product, as in Hilbert spaces,
or directly, as in Banach spaces. Once a vector space is normed, then all
of the familiar notions from analysis, such as limit and Cauchy sequence
can be defined. What we wish to suggest in this paper is that while the
multiplicative and additive fragment MALL of linear logic corresponds to
the linear structure of a vector space, the exponentials correspond to its
analytic structure.

We begin by introducing the two main notions of complete normed
vector space, Banach spaces and Hilbert spaces. The construction which
will be used to model the exponential formulas ! A arose originally in
quantum field theory, and is known as Fock space. Tt was designed as
a framework in which to consider many particle states. The key point
of departure for quantum field theory was the realization that so-called
“elementary” particles are created and destroyed in physical processes
and that the mathematical formalism of ordinary quantum mechanics
needs to be revised to take this into account. The physical intuitions
behind the Fock construction will be sketched in the penultimate section.
The formula for Fock space will also be familiar to mathematicians in
that it corresponds to the free symmetric algebra on a space. As a free
construction, Fock induces a pair of adjoint functors, and hence a cotriple.
It is this cotriple which will be used to model !. It should be noted
that this category of algebras inherits the monoidal structure from the
underlying category of spaces but there is no hope that this category
could have a monoidal-closed structure.

While Fock space has an abstract representation in terms of an infinite
direct sum, physicists such as Ashtekar, Bargmann, Segal and others,
see [AM-A80, Ba61, S62] have analyzed concrete representations of Fock
space as certain classes of holomorphic functions on the base space. Thus,
these models further the intuition that the exponentials correspond to
the analytic properties of the space. In fact, there is a clear sense in
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which morphisms in the Kliesli category for the cotriple can be viewed
as generalized holomorphic functions. Thus, there should be an analogy
to coherence spaces where the Kliesli category corresponds to the stable
maps.

Fock space also has two additional features which correspond to ad-
ditional structure, not expressible in the syntax of linear logic. These
are the annihilation and creation operators, which are used to model the
annihilation and creation of particles in a field. These may give a tighter
control of resources not expressible in the pure linear logic. Thus, these
models may be closer to the bounded linear logic of Girard, Scedrov and
Scott [GSS91].

The results of this paper suggest that analyticity may provide new
insights into computability not captured by the traditional notions of
continuity. Continuity has been enormously successful in capturing the
idea that computable functions process information a finite piece at a
time. On the other hand, there are many continuous functions that are
not computable. Despite the tremendous clarifications brought about by
Scott’s ideas, a precise characterization of computability still appeals to
notions of encoding from classical recursion theory. With the notion of
analytic function one has the notion of convergent power series which
represents the function. This is nothing more than an encoding of a
continuous function with a discrete string. Thus the notion of encoding
may be captured by analyticity. Of course, we are far from offering any
such theory yet.

Another possible application of this work is that the refined connec-
tives of linear logic may lend insight into certain aspects of quantum field
theory. For example, there are two distinct methods of combining par-
ticle states. One can superimpose two states onto a single particle, or
one can have two particles coexisting. The former seems to correspond to
additive conjunction and the latter to the multiplicative. This physical
imagery is missing in quantum mechanics, which was specially designed
to handle a single particle; it only shows up in quantum field theory.

In this paper, we begin by reviewing the categorical structure neces-
sary to model linear logic, and specifically exponential types. We then
give the relevant definitions pertaining to normed vector spaces, as well
as a number of examples. We also discuss the monoidal structure of these
categories. Then, the various ingredients which go into the construction
of Fock space are presented and the resulting adjointness is described. Fi-
nally, the holomorphic function representation of Fock space is presented,
and a brief description of its physical interpretation is given.
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1 Linear Logic and Monoidal Categories

We shall begin with a few preliminaries concerning linear logic. We shall
not reproduce the formal syntax of linear logic, nor the usual discussion of
its intuitive interpretation or utility—for this the reader is referred to the
standard references, such as [G87]. We do recall [Se89] that a categorical
semantics for linear logic may be based on Barr’s notion of x-autonomous
categories [B79]. If only to establish notation, here is the definition.

Definition 1 A category C is x-autonomous if it satisfies the following:

1. C is symmetric monoidal closed; that is, C has a tensor product
A ® B and an internal hom A —o B which is adjoint to the tensor
in the second variable

Hom(A® B,C) = Hom(B,A — C)

2. C has a dualizing object L; that is, the functor ( )*:C®P — C
defined by AX = A —o L is an involution (viz. the canonical mor-
phism A — ((A —o L) —o L) is an isomorphism).

In addition various coherence conditions must hold—a good account of
these may be found in [M-OM89]. Coherence theorems may be found
in [BCST, B191, B192]. An equivalent characterization of *-autonomous
categories is given in [CS91], based on the notion of weakly distributive
categories. That characterization is useful in contexts where it is easier
to see how to model the tensor @, the “par” % and linear negation, and
the coherence conditions may be expressed in terms of those operations.

The structure of a *-autonomous category models the evident epony-
mous structure of linear logic: the categorical tensor @ is the linear mul-
tiplicative ® and the internal hom —o is linear implication. The dualizing
object L is the unit for linear “par” 7, or equivalently, is the dual of the
unit I for the tensor?.

There are a number of variants of linear logic whose categorical seman-
tics is based on this. First is full “classical” linear logic, which includes
the additive operations. These correspond to requiring that the category

In other papers we have used the notation T for the unit for ®, and & instead of
7 . Here we shall try to avoid controversy by using notation traditional in the context
of Banach spaces, and by generally ignoring the “par”. So in this paper, & means
direct sum, which coincides with Girard’s notation. We use x for cartesian product,
corresponding to Girard’s &. And we shall use the usual notation for the appropriate
spaces when referring to the units.
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C have products and coproducts. (If C is *-autonomous, one of these will
imply the other by de Morgan duality.) There is also Girard’s notion
of “intuitionistic” linear logic [GL87|, which omits linear negation and
“par”—this corresponds to merely requiring that C be autonomous, that
is to say, symmetric monoidal closed (with or without products and co-
products, depending on whether or not the additives are wanted). There
is an intermediate notion, “full intuitionistic linear logic” due to de Paiva
[dP89], in which the morphism A — A1+ need not be an isomorphism.
And as mentioned above, there is the notion of weakly distributive cate-
gory [CS91, BCST], where negation and internal hom are not required.

One classically important class of *-autonomous categories are the
compact categories [KL80] where the tensor is self-dual: (A ® B)t =
AL ® BL. Linear logicians often regard with derision those models in
which “tensor” and “par” coincide, but from some mathematical points
of view these are very natural.

In this paper we shall model various fragments of linear logic; we
shall describe the fragments in terms of the categorical structure present,
without explicitly identifying the fragments.

Finally, in order to be able to recapture the full strength of classical
(or intuitionistic) logic, one must add the “exponential” ! (and its de
Morgan dual ?). (All our structures will model !.) We saw in [Se89]
that this amounts to the following.

Definition 2 A monoidal category C with finite products admits (Girard)

storage if there is a cotriple ':C — C (with the usual structure maps
A

€ )
A 144 A), satisfying the following:

1. for each object A € C, ' A carries (naturally) the structure of a

e d
(cocommutative) ®-comonoid T LA tig ® 'A (and the
coalgebra maps are comonoid maps), and

2. there are natural comonoidal isomorphisms

1511 and 'AQ !B -5 1(Ax B).

Some remarks: First, it is not hard to see that the first condition above
is redundant, the comonoidal structure on ! A béing induced by the iso-
morphisms of the second condition. However, the first condition is really
the key point here, as may be seen from several generalizations of this def-
inition, to the intuitionistic case without finite products in [BBPH], and
to the weakly distributive case, again without finite products, [BCS93].
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The main point here is that without products one replaces the second
condition with the requirement that the cotriple ! (and the natural trans-
formations ¢, §) be comonoidal. And second, one ought not drown in the
categorical terminology—terms like “comonoidal” in essence refer to var-
ious coherence (or commutativity) conditions which may be looked up
when needed. Readers not interested in coherence questions can follow
the discussion by just noting the existence of appropriate maps, and be-
lieve that all the “right” diagrams will commute. They can regard it as
somebody else’s business to ensure that this is indeed the case.

In the mid-1980’s, Girard studied coherence spaces as a model of sys-
tem F, and realized the following fact, which led directly to the creation of
linear logic. Of course Girard did not put the matter in these categorical
terms at the time, but the essential content remains the same—ordinary
implication factors through linear implication via the cotriple !. (An-
other way of expressing this is to say that a model of full classical linear
logic induces an interpretation of the typed A-calculus.)

Theorem 1 IfC is a x-autonomous category with finite products admit-
ting Girard storage !, then the Kleisli category Cy is cartesian closed.

This result is virtually folklore, but a proof may be found in [Se89].

One of the problems with finding models of linear logic comes from
the difficulty of finding well-behaved (in the above sense) cotriples on
x-autonomous categories. For example, one of the main problems with
vector spaces as a model of linear logic is the lack of any natural interpre-
tation of !. (We shall soon return to this point, and indeed, in a sense
this is the main point of this paper.) This question seems closely bound
up with questions of completeness. Barr [B91] has shown how in certain
cases one can get appropriate cotriples (via cofree coalgebras) from a sub-
category of the Chu construction [B79]. One case where this route works
out fairly naturally is if the *-autonomous category is compact: in that
case, one can construct cofree coalgebras by the familiar formula

!A=TXxAXx (AR, A)Xx (AR, A®, A) x -+~

(where the tensors @, are the symmetric tensor powers). We shall see an
echo of this construction in the Fock space construction below.

2 Normed Vector Spaces

As discussed in the introduction, we will be primarily working in normed
vector spaces. Normed spaces seem necessary to capture correctly the
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intuition behind Girard’s exponentials. Vector spaces are, in some sense,
intrinsically finitary structures. Every vector is a finite sum of multiples
of basis vectors, and one is only allowed to take finite sums of arbitrary
vectors. It seems likely that to correctly model ! and ?, one should
be able to take infinite sums of vectors, thereby capturing the idea of
infinitely renewable resource. However, to do this, one needs a notion
of convergence. And to define convergence, one needs a notion of norm.
Once a space is normed, then it is possible to define limits and Cauchy
sequences, and so on. Normed vector spaces, which are the principal ob-
jects of study in functional analysis, should be considered as the meeting
ground of concepts from linear algebra and analysis. They are also an
ideal place to model linear logic.

We will now briefly review the basic concepts of the subject. For more
complete discussions, see [KR83, C90, CLMT79].

Henceforth all vector spaces are assumed to be over the complex num-
bers and are allowed to be infinite-dimensional. We will use Greek letters
for complex numbers and lower-case Latin letters from the end of the
alphabet for vectors.

Definition 3 A norm on a vector space V is a function, usually written
| I, from V to R, the real numbers, which satisfies

1. ||v]|| >0 forallveV,
2. [|v]|=0fv=0,

3. lev |l =[allvl,

- llvtwll<llvll+lwl

For finite dimensional vector spaces the norm usually used is the fa-
miliar Fuclidean norm. As soon as one has a norm one obtains a metric
by the equation d(u,v) = || v — v ||. One can ask whether the resulting
space is complete or not as a metric space. It turns out that the spaces
that are complete play a central role in functional analysis.

2.1 Banach Spaces
Definition 4 A Banach space is a complete, normed vector space.

Example 1 Consider the space of sequences of complex numbers. We
write ¢ for such a sequence, ¢ = {a,};2; and we write || a || for the
supremum of the | a; |.

loo ={a:] a|co < 0}
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This is a Banach space with || @ ||oo as the norm.
Another norm is obtained on sequences as follows. Define:

lall, = XaZil ai |
Then let:
h=Aa:]la]l, <oo}
More generally, if p > 0, we may define:
b=1{a:llall, = (572]a|P)/P < o0}

All of these will be examples of Banach spaces. Furthermore, these can
be defined not only for sequences of complex numbers, but for sequences
obtained from any Banach space.

Example 2 Let X be a compact Hausdorff space. The vector space of
complex-valued continuous functions on X is generally denoted C(X).
Since X is compact, such functions must have a supremum, and from
this it is straightforward to obtain a norm. Now convergence in this
norm is the familiar notion of uniform convergence. As is well known
from elementary analysis, sequences of uniformly bounded, continuous
functions converge to a bounded continuous function. Thus, we have a
Banach space. On the other hand if we looked at functions that vanish
outside some closed, bounded interval (the functions of compact support)
then we do not get a Banach space since these could converge to a function
that does not have compact support.

The following theorem shows one common way in which Banach spaces
arise. First we need a definition.

Definition 5 Suppose that By, By are Banach spaces and that T is a

| Tz

linear map from By to B;. We say that 1T' is bounded if supz+o =

exists. We define the norm of T', written || T'||, to be this number.
If T is indeed bounded, then a standard argument [KR83], establishes
Lemma 2 supj<1|| Tz || = || T |-

Thus one can use vectors of unit norm to calculate the norm of a linear
function rather than having to look for the sup over all nonzero vectors.
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Linear maps from a Banach space to itself are traditionally called opera-
tors, and the norm of such maps is called the operator norm.

Since a Banach space is also a metric space under the induced metric
described above, one can also ask to characterize which linear maps are
also continuous. In this regard, we have the following result.

Lemma 3 A linear map from f: A — B is continuous if and only if it
is bounded.

The following theorem shows that the category of Banach spaces and
bounded linear maps is enriched over itself.

Theorem 4 If A is a normed vector space and B is a Banach space then
the space of bounded linear maps with the norm above is a Banach space.

We will denote this space A —o B.

There are several possible categories of interest with Banach spaces
as the objects. The most obvious one is the category with bounded linear
maps as the morphisms. However, it turns out that the category with con-
tractive maps? is of greater interest and has nicer categorical properties.
These properties are discussed in [B76a] and below.

Definition 6 A contractive map, T', from A to B is a bounded linear
map satisfying the condition, || Tz || < ||z ||. Equivalently, the contrac-
tive maps are those of norm less than or equal to 1.

We will write BANCON for the category of Banach spaces and contrac-
tive maps and BANACH for the category of Banach spaces and bounded
linear maps., While BANCON has a richer categorical structure, for the
purposes of modelling the exponential types of linear logic, we will be

forced to work in BANACH.

2.2 Monoidal Structure of BANACH

We first point out that BANACH has a canonical symmetric monoidal
closed structure. We begin by constructing a tensor product. Let A and
B be objects in BANACH. Begin by forming the tensor of A and B,
A ®c B, as complex vector spaces. We first define a partial norm for
elements of the form a ® b by the equation:

la@bll=1lalllb]

2Strictly speaking, they should be called “non-expansive” maps.
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We would like to extend this partial norm to a norm on all of A®¢ B.
Such a norm is called a cross norm. It turns out that there are many
such cross norms, a number of which were discovered by Grothendieck.
The one we will use in this paper is called the projective cross norm. It
is in some sense the least such. A detailed discussion of these issues is
contained in [T79]. The projective cross norm is defined for an arbitrary
element, z, of A @¢ B by the following formula:

|z || =inf{||al|l]| b]|l such that x = Xa ® b}

One can verify that this is in fact a cross norm on A ®c B. Now, the
resulting normed space will not be complete in general, so one obtains a
Banach space by completing it. This will act as the tensor product in the
category BANACH. Tt will be denoted simply by A @ B. Furthermore,
we have the following adjunction in BANVACH.

Lemma 5 The functor B ® () is left adjoint to B —o ( ).
Corollary 6 BANACH is a symmetric monoidal closed category.

Analogously, BANCON is also a monoidal closed category. Note that
although one only uses contractive maps in this category, the internal hom
is still given by all bounded linear maps.

As such, they are models of (at least) the multiplicative fragment
of intuitionistic linear logic. To obtain a model of the classical linear
logic, one possibility is the topological construction of Barr in [B76a).
See also [Bl93a]. The idea is to add an additional topological structure to
the space, and then only consider maps which are also continuous with
respect to this topology. If the topology is chosen carefully, one obtains a
large class of reflexive objects, i.e. objects which are isomorphic to their
double dual space. Such objects can be used to model the negation of
classical linear logic.

2.3 Completeness Properties of BANCON and BANACH

The main advantage of studying the category of contractions is in its
completeness properties. While BANACH has very weak completeness
properties, BANCON is complete and cocomplete. These constructions
exist in BAMA CH but some lose the universal property. We will describe
some of these universal properties. We begin with finite coproducts.

Definition 7 Let A and B be Banach spaces. The direct sum, A® B, is
the Cartesian product equipped with the norm || a @b || = al|l +| ]
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Then we have the distributivity property of ® over @.
Proposition 7 A® (B® B~ (A® B)®(A® B').
We now discuss finite products.

Definition 8 The product of two Banach spaces, A x B, has as its un-
derlying space A ® B, but now with norm given by:

la®b =maz{][all|lo]}

As a category of vector spaces, BANCON is fairly unique in this
respect. While most such categories model the additive fragment of linear
logic, they invariably equate the two connectives, since finite products
and coproducts coincide. In other words, BANCOAN does not share the
familiar property of being an additive category.

We now present countably infinite products and coproducts.

Definition 9 Let { A;}32, be a sequence of Banach spaces. Define 11( A;)
to be those sequences which converge in the [, norm, i.e. bounded se-
quences equipped with the obvious norm.

Define %(A;) to be all sequences which converge in the Iy norm.

This gives countable products and coproducts in BANCON . Similar
constructions can be applied for uncountable products and coproducts.

Equalizers in BANCON correspond to equalizers in the underlying
category of vector spaces. The fact that bounded maps are continuous
implies that the subspace will be complete. Coequalizers are obtained as
a quotient, with the induced norm being the infimum of the norms of the
elements of the equivalence class. See [C90] for a discussion of quotients
of Banach spaces.

Theorem 1 BANCON is complete and cocomplete.

All of the above constructions exist in BANACH, but some of them
will lose their universal property. BANACH is an additive category,
with sums and products given by the coproducts in BANCON . (Note
that the two spaces A x B and A @ B are isomorphic in BANACH,
but not in BANCON.) In BANACH, the above infinite products and
coproducts exist, but do not share the universal property. They only have
this property for bounded families of maps. Equalizers and coequalizers

are as in BANCON.
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2.4 Hilbert Spaces

An alternate approach to defining a norm on a vector space is vig an inner
product. An inner product has the property that it induces a norm on
the underlying space.

Definition 10 Given a complex vector space, V, an inner product for
'V is a function from V x V to the complex numbers which is conjugate
linear in its first argument and linear in its second argument. This is
written (u|v).

Furthermore, an inner product must have the following properties.

o {(z|z)>0

o (zfy) = (ylz)
o if (z|z) =0, then z=0

Here, z refers to complex conjugation. Real Hilbert spaces are defined
analogously, with conjugation being taken to be the identity.

Given an inner product we immediately get a norm by || z || = ({z|z))}/2.
As with Banach space what turns out to be crucial is the property of
being complete.

Definition 11 A Hilbert space is a vector space equipped with an inner
product such that the vector space is complete in the induced norm.

Example 3 The space /5 of all sequences of complex numbers such that:
2724 a4 |2 < o
One defines an inner product by:
(zly) = X2, 2%

Every finite dimensional complex vector space is a Hilbert space with
the usual inner product.

The category of Hilbert spaces and bounded linear maps will be de-
noted by HZLBERT. This category has a tensor product which can be
constructed in a manner analogous to the construction for Banach spaces.
HILBERT also has finite products and coproducts, in both cases these
are given by direct sum, with the evident inner product. HZLBERT does
not have very many infinite limits or colimits.
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3 Symmetric and Antisymmetric Tensors

We introduce two further constructions in the category BANMACH. These
will be quotients of the tensor product. Since the category has coequal-
izers such quotients will be well-defined.

3.1 Symmetric Tensor Products

First, we introduce the symmetric tensor product of a Banach space with
itself.

Definition 12 Let A be a Banach space. The Banach space A @ A is
defined to be the following coequalizer:
id
ARATTARA — AR A

T

Note that T is the twist map, a ® b— b® a.

This is the general definition of symmetrized tensor. It turns out that
in categories of vector spaces, this quotient is canonically isomorphic to
the equalizer of these two maps, and that this equalizer is split by the
map:

1

We will frequently use this representation in the sequel.

The n*t symmetric power is defined analogously. The Banach space
@™ A has n! canonical endomorphisms, and the Banach space @Y% is the
coequalizer of all of these. Again, it is isomorphic to the equalizer, and
there is a splitting, as above. A good way to view the symmetrized tensor
is to observe that the symmetric group acts on the space @™ A, and that
the symmetrized tensor is the invariant subspace. Assuch, an appropriate
notation for the symmetrized tensor is:

K" A

n!

We will also freely use this representation, as well.

3.2 Antisymmetric Tensor Products

This will be defined in a similar fashion. Again, we first define the an-
tisymmetric tensor of a Banach space B with itself. It will be denoted
B ®4 B. Tt is the coequalizer of the following diagram:
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id
BB T2 B®B—B®uB
—T
Here, —7 is the map a ® b — —b ® a.
Members of this space can canonically viewed as elements of the or-
dinary tensor product, of the form:

T=a®R®b—-bRa

The nt* antisymmetric power is defined analogously.

4 Fock space and categories of algebras

4.1 Fock space

We are now ready to define the Fock spaces. They are traditionally
defined in HTILBERT ; we will, however, define them in BANACH.

Definition 13 Let B be a Banach space. The symmetric Fock space
of B is the infinite direct sum of the spaces @, B, where, when n is zero
we use the complex numbers. The antisymmetric Fock space of B is
the infinite direct sum of the spaces @' B.

F(B)=C®B®---0Q.;Bd---
]:A(B):C@B@...@®ZB@...

Since Fock is defined using infinite direct sums and coequalizers it is clear
that Fock defines a functor.

We can think of an element of F(B) as an infinite sequence (¢, vy, va,...)
where c is a complex number and v; € B;.

Now we check that the Fock space actually satisfies all the properties
that need to be satisfied by an OF COURSE type, i.e. satisfies the proper-
ties of [Se89], discussed in Section 1. This consists of two parts, verifying
that Fock spaces form a cotriple on the category of Banach algebras and
verifying the so-called exponential law, viz. 1(AX B) = 1A® ! B. We
check the former by displaying a suitable adjunction in the next subsec-
tion.

Proposition 8 Let A and B be Banach spaces.
F(Ax B)= F(A)® F(B).
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Here the product is what is called the direct sum by analysts. The iso-
morphism is in the category BANACH.

Proof — We need to exhibit maps in both directions and show that all the
conditions required for an isomorphism are satisfied. The isomorphism is
based on the following “formal calculation”.

F(Ax B) = F(A@ B)
Ce(AaB)®3((A®B)®, (A® B)) -
= COABB (A0, A)@3(B®;B)®(A®: B)--
= F(A)® F(B).

The rigorous argument is as follows. We call an element of F(B) a pure
tensor if it is of the form (0,0,...,v,0,0,...) and a finite-rank tensor if
it is of the form (vg,vy1,...,0s,0,0,...); i.e. zero after some finite stage.

Now the pure tensors form a basis for #(B). In order to define the iso
from F(A x B) to F(A) ® F(B) we need only specify the map on the
pure tensors. A pure tensor, p, in F(A x B) looks like p= Xz; ®...Q 2,
where z; = y; + 2,4 € A,z € B. Using distributivity of @ over + we
have

p=2[+2)Q ... (¥n + )]

=X ®. . @Yt F (U, @ QU )O(2, ©. .. ®Z;)+. .+ 210 .. O 2]

The last expression is a sum of elements of F(A) ® F(B). The iso in
the other direction is obtained by viewing the pure elements of F(A) and
F(B) as polynomials and carrying out polynomial multiplication. |

The units are easily identified.

Lemma 9 The complex numbers, C, viewed as a Banach space form a
unit for tensor product. The one point space, written 0, is the unit for
the direct sum.

The effect of F on the units is given below. The proofs are immediate
from the definitions. Equality means isomorphism in BANACH.

Lemma 10 1. F(0)=C.

Proof — The proof of the first assertion is immediate. For the second
assertion, note that, since C is the unit for tensor all the terms in the
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infinite direct sum are just C. Thus we have infinite sequences of members
of C with the same convergence criterion as for /5. I

This lemma shows that one cannot use this construction in categories
of finite-dimensional spaces.

Now we consider the antisymmetrized Fock space®. It turns out
that one gets a model of the exponential types in the category of finite-
dimensional vector spaces using the antisymmetrized Fock space.

Proposition 11 If V is a finite-dimensional vector space of dimension
n, then F4(V) is also a finite-dimensional vector space with dimension
2m.

Proof — Consider the vector space @ V with p > n. We claim that this
space is the zero vector space. Since @ is adjoint to internal hom in VEC¢,,
the space @" V is isomorphic to the space of completely antisymmetric
p-linear maps from V to the scalars. Let f denote such a map. Since V
is only n-dimensional one cannot have p linearly independent arguments
to such maps. Thus one of the arguments must be a linear combination
of the others. Thus on any arguments f becomes a combination of terms
of the form f(...,u,...,u,...) where two arguments must be equal. But
antisymmetry makes such a term zero. Thus f is the zero vector and the
vector space @% V is the one-point space. Thus the infinite direct sum
becomes a finite direct sum. Now consider p < n. It is clear that one
can only choose ) sets of p linearly independent vectors given a basis.
Thus the dimensionality of the space @ V is C} and hence, adding the
dimensions to get the dimension of the direct sum, we conclude that the
dimension of F4(V)is 2". |

The exponential law for the antisymmetric case can be argued simi-
larly. The detailed verification can be found in [BSZ92] in Section 3.2 on
exponential laws.

4.2 Categories of algebras

In this section we shall review some basic facts about categories of alge-
bras, and see in particular how these fit into the current context. (See
[M71] for a review of the basic categorical facts, and [L65] for the basic
algebra, for instance.) For reference, we do give the following definition
here.

®The arguments below are well-known to differential geometers. Prakash Pananag-
den would like to thank Steve Vickers for reminding him about these facts.
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Definition 14 A triple consists of a functor F: B — B, together with
natural transformations n:id — F and p: FF — F, such that ponk =
poFn=idand popul = poTp.

One simple point to recall is that categories of algebras and of coalge-
bras are closely connected to the existence of triples and cotriples. Given
a triple F: B — B, (with structure morphisms 7, 1), an F-algebra is an
object B and a morphism h: F(B) — B (subject to two commutativity
conditions, corresponding to the associative and unit laws). (This notion
can be generalized to arbitrary functors.) There is a canonical category
of such algebras, the Eilenberg-Moore category C¥', and an adjunction
C = CF. Any adjunction canonically induces a triple, and this one
canonically induces the original triple. The category of free F-algebras is
the Kleisli category Cr of the triple; again, there is a canonical adjunc-
tion C == Cr which induces the original triple. Of course this dualizes for
cotriples, with the corresponding notion of coalgebras. (We shall avoid
the unpleasant use of terms like “coEilenberg-Moore” and “coKleisli”.)

Usually mathematicians have been more interested in the Eilenberg-
Moore category of a triple (or cotriple) than in the Kleisli category; al-
though there has been some interest in Kleisli categories recently (for
instance in the context of linear logic, as mentioned earlier in this pa-
per), we shall follow this tradition and shall work in Eilenberg-Moore
categories. Indeed, it is there that we shall find some of our models.
One reason for this is quite practical: it is often simpler to recognize
the category of algebras and so derive the triple (similarly, once one has a
candidate for a triple, it is often simpler to construct the category of alge-
bras and verify the adjunction than to directly show the original functor
is a triple). But there is another reason: we want to show that the Fock
space functor is a cotriple (so as to model !), but on the categories of
spaces we consider, this is not the case—rather it is a triple. By passing
to the algebras, we can fix this, because of the following fact:

F
Fact Given an adjunction C —= D, F H U, the composite UF is a

U
triple on C, and so (dually) the composite FU is a cotriple on D.

So we obtain our model of ! on the category of algebras.
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4.2.1 Algebras for the symmetric (bosonic) Fock space con-
struction

We begin with a more traditional notion of algebra; the connection be-
tween these comes via the triple induced by the adjunction given by the
free algebra construction, as outlined above. In other words, the category
of (traditional) algebras is equivalent to the category of U F algebras.

Definition 15 An algebra A is a space A equipped with morphisms

mAR A — Aand i:C— A

satisfying
ARA®A m@id . AgA
id®m ™m
AR A m — A
CpAa —1®id | gg4 WO 45C
o~ m ~
A

Here we are supposing the base field to be C; otherwise replace C with
the base field k. If in addition the following diagram commutes, then the
algebra A is said to be symmetric or commutative. (7 is the canonical
“twist” morphism.)

AQA—T AR A

m
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An example of such an algebra comes from the Fock space of a Banach
space: the multiplication m is defined by “multiplication of series” in an
evident manner. The use of the symmetrized tensor in the definition of
Fock space guarantees that this will indeed be a symmetric algebra, and
it is standard that this description gives the free such algebra. In other
words, we have the following proposition.

Proposition 12 Given a Banach space B, the Fock space F(B) canoni-
cally carries an algebra structure, and indeed is the free symmetric algebra
generated by B.

It follows from this (or rather from the adjunction BANCON =
SALG) that we have a cotriple on the category SALG of symmetric
algebras, given by taking the Fock algebra on the underlying space of an
algebra. As the details of this are both standard and similar to the case
of the antisymmetric Fock space construction, which we shall discuss in
more detail next, we shall leave the details here to the reader.

4.3 Algebras for the antisymmetric (fermionic) Fock space
construction

Recall that we work in the context of VEC,, finite dimensional vector
spaces when considering the antisymmetric Fock construction. This cat-
egory is self-dual, and is compact with biproducts: the product and co-
product coincide. This duality also implies that a triple is also a cotriple,
so we can model ! in the category of spaces. However, to show that the
Fock space construction defines a triple (or cotriple), it is again simpler to
consider the category of algebras. Although we are not familiar with any
previous consideration of this category of algebras as such, the context
is familiar: the antisymmetric Fock space construction is usually called
(when thought of as an algebra) the Grassman algebra, or the “alter-
nating” or “interior” algebra; the multiplication defined on it is called
the “wedge product” (a term derived from the usual notation for this
product).

Definition 16 An alternating algebra A is a graded algebra A (with unit)
whose multiplication map satisfies the property that, if x,y are of degree
m,n respectively, then zy = (~=1)""ya (which by the grading must be of
degree n + m).

Note that the unit must be of degree 0. Morphlsms of alternating algebras
are just homomorphisms as algebras.
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Proposition 13 There is a canonical alternating algebra structure on

Fa(V), for any finite dimensional vector space V. The antisymmetric
Fa

Fock construction is left adjoint to the forgetful functor U:VECsy T—
U

AALG, where AALG is the category of alternaling algebras. As a conse-

quence, F 4 defines a triple (and so cotriple) on VEC 4.

Proof — (Sketch) The multiplication on F4(V')is the standard “wedge”
product [L65], which to elements 2; ®4 ...®4 Tn, %1 ®A ... Q4 U gives
the product z; ®4 ... @4 Tn Q4 Y1 ®4 ... R4 Ym. Here x ®4 y means
the equivalence class of z @ y in A ®4 A. (Essentially this is the same
“multiplication of power series” we had in the symmetric case, with the
alternating product used in place of the usual tensor.) For a vector space
V, define n: V. — UF4(V) as the canonical injection. Given an alter-
nating algebra A, define e: F4(UA) — A by “adding the terms of the
series”: (zg, 1,23 ®4 23,...) = i(20) + z1 + m(z},23) + -+, where i, m
are the algebra maps.

To verify that we have an adjunction we must show the following
commute:

Fuv) ZAW mu v Fv)

1 Fa

Fa(V)

UA W, UFA(UA)

Uc

UA
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The second diagram is obvious; to verify the first, notice that F4(n(z))
maps

(:Dg,fl?l,m% ®A :L'%,...) = (mOJ
(0, 331,0, . .>,
{0,0,23,0,...) ®4 (0,0,23,0,...),
)
and it is clear that “adding up this series” just returns the original term.
|

It now follows that we can model ! in VEC ;q with F4, via the formula

'V = (Fa(Vh))L.

5 The Holomorphic-Function Representation
of Fock Space

A possible reaction to the results of the last section is that the Fock
space construction works purely fortuitously, in the sense that the proper
notions of tensor products and infinite direct-sums happen to exist and
conspire to make the construction of internal comonoids possible. In the
present section we argue that in fact this construction is linked to much
deeper mathematics. The symmetrized Fock space on a Banach space B,
turns out to be a space of holomorphic functions (analytic functions) on
B, properly defined. This hints at possible deeper connections between
analyticity and computability which need to be explored.

The ideas here stem from early work by Bargmann [Ba61] on Hilbert
spaces of analytic functions in quantum mechanics. This was extended
by Segal [S62, BSZ92] to quantum field theory and Segal’s extension was
used by Ashtekar and Magnon [AM-A80] to develop quantum field theory
in curved spacetimes. (A brief summary of the ideas is contained in an
appendix to [P80] and in [P79].) The latter work involved making sense of
the familiar Cauchy-Riemann conditions on infinite-dimensional spaces.

We quickly recapitulate the basic notion of analytic function in terms
of one complex variable before presenting the infinite-dimensional case.
A very good elementary reference is Complex Analysis by Ahlfors [Ah66].
Given the complex plane, C, one can define functions from C to C. Let
z be a complex variable; we can think of it as z + 7y and thus one can
think of functions from C to C as functions from R? to R%. An analytic
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or holomorphic function is one that is everywhere differentiable. In the
notion of differentiation, the limit being computed, wviz.

o f@ k) - f@)

h—0 h

allows h to be an arbitrary complex number and hence this limit is re-
quired to exist no matter in what direction h approaches 0. This much
more stringent requirement makes complex differentiability much stronger
than the usual notion of differentiability. If a complex function is differ-
entiable at a point it can be represented by a convergent power series in
a suitable open region about the point. If one uses the fact that A can
approach zero along either axis one can derive the Cauchy-Riemann equa-
tions for a complex valued function f = u(z,y)+ iv(z,y) of the complex
variable z = z + 1y,

du v Jdu dav

gz~ 0y By Oz

What is remarkable about complex functions is that this definition
of analyticity yields the result that a complex-analytic function can be
expressed by a convergent power-series in a region of the complex plane.
This is remarkable because only one derivative is involved in the Cauchy-
Riemann equations whereas the statement that a power-series represen-
tation exists is stronger, for real-valued functions, even than requiring
infinite differentiability. In real analysis one has examples of functions
that are infinitely differentiable at a point, but do not have a power series
representation in any neighbourhood of that point. A function may have
a power series representation that is valid everywhere, a so-called entire
holomorphic function; the complex exponential function is an example.

There is a formal perspective, due to Wierstrass, that is rather more
illuminating. Think of a complex variable z = z + iy and its conjugate
7 = z — iy as being, formally, independent variables. A function could
depend on z and on its complex conjugate, Z, for example, the function
that maps each z to 2z +12Z. An analytic or holomorphic function is one
which has no dependance on z. This is expressed formally by df /dz = 0.
When expressed in terms of the real and imaginary parts of f and z, this
equation becomes the familiar Cauchy-Riemann equations. Thus this
reinforces the view that a holomorphic function is properly thought of as
a single complex-valued function of a single variable rather than as two
real-valued functions of two real variables.

The theory of functions of finitely many complex variables is a non-
trivial extension of the theory of functions of a single complex variable.
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Entirely new phenomena occur, which have no analogues in the theory of
a single complex variable. An excellent recent text is the three volume
treatise by Gunning [Gu90]. For our purposes we need only the barest
beginnings of the theory. Given C", we can have functions from C" to C.
One can introduce complex coordinates on C*, z1,...,z,. One can define
a holomorphic function here as one having a convergent power-series ex-
pansion in z,...,%,. The key lemma that allows one to mimic some of

the results of the one-dimensional case is Osgood’s lemma?.

Lemma 14 If a complex-valued function is continuous in an open sub-
set D of C* and is holomorphic in each variable seperately, then it is
holomorphic in D.

From this one can conclude that a holomorphic function in n variables
satisfies the Cauchy-Riemann equations %f:,_ = 0. One is free to take either
one of (a) satisfying Cauchy-Riemann equations or (b) having convergent
power-series representations as the definition of holomorphicity.

Now we describe how to define holomorphic functions on infinite-
dimensional, complex, Banach spaces. The basic intuition may be sum-
marized thus. One starts with subspaces of finite codimension. Thus the
quotient spaces are isomorphic to some C"*. One can define what is meant
by a holomorphic function on these quotient spaces as in the preceding
paragraph. By composing a holomorphic function with the canonical
surjection from the original Banach space to the quotient space we get a
function on the original Banach space. These functions can all be taken

to be holomorphic.

o

Intuitively these are the functions that are constant along all but
finitely many directions, and holomorphic in the directions along which
they do vary. These functions are called cylindric holomorphic func-
tions. Because the sequence of coefficients of a power-series is absolutely
convergent, we can define an /; norm on these functions in terms of the
power-series. Finally the collection of all holomorphic funcitons is defined
by taking the /;-norm completion of the cylindric holomorphic functions.

*There is a considerably harder theorem, called Hartog’s theorem, which drops the
requirement of continuity.



498

Given a Banach space B, let U be a subspace with finite codimension
n, i.e. the quotient space B /U is an n complex-dimensional vector space.
The space B/U is isomorphic to C*. Let ¢ : B/U — C" be an isomor-
phism; such a map defines a choice of complex coordinates on B/U. Let
7 be the canonical surjection from B to B/U.

Definition 1 A cylindric holomorphic function on B is a function of
the form fogomy, where U, my and ¢ are as above and f is a holomorphic
function from C* to C.

We need to argue that the choice of coordinates does not make a real
difference. Of course which functions get called holomorphic does depend
on the choice of coordinates, but the space of holomorphic functions has
the same structure®. Suppose that U and V are both subspaces of B and
that U is included in V. Suppose that both these spaces are spaces of
finite codimension, say n and m respectively. Clearly n > m. Now we
have a linear map w7y : B/U — B/V given by z + U — 2 + V; clearly
this is a surjection. Now given coordinate functions ¢ : B/U — C"
and ¥ : B/V — C™ we can define a function a : C" — C™, given by
1 omwyy o ™1, which makes the diagram commute. Thus we do not have
to impose “coherence” conditions on the choice of coordinates, we can
always translate back and forth between different coordinate systems.

We will suppress these translation functions in what follows and as-
sume that the coordinates have been serendipitously chosen to make the
form of the functions simple. In other words, we can fix a family of sub-
spaces {W,|n € N} with W, having codimension n and W,y C W,.
The coordinates can be chosen so that the space B/W,, has coordinates
XyenyZn.

Suppose that f is a cylindric holomorphic function on B. This means
that there is a finite-codimensional subspace W, and a holomorphic func-
tion fw,from W to C, such that f = fiy omy. The function fy regarded
as a function of n complex variables has a power-series representation

fW(zla . '7zn) = Zail---ikzil i 'Z;ck

and furthermore we have the following convergence condition

Ylas, .0 | < o0.

*This happens even in the one dimensional case. The function % is considered anti-
holomorphic traditionally, but one could have called it holomorphic by interchanging
the role of z and Z.
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Thus with each such cylindric holomorphic function we can define the sum
of the absolute values of the coefficients in the power-series expansion as
the norm of the function. Viewing the sequences of coefficients as the
elements of a complex vector space, we have an {; norm. We write || f ||
for this norm of a cylindric holomorphic function.

Definition 2 An [;-holomorphic function on B is the limit of a se-
quence of eylindric holomorphic function in the above norm.

The [; emphasizes that the holomorphic functions are obtained by a par-
ticular norm completion. In the corresponding theory of holomorphic
functions on Hilbert spaces, one uses the inner-product to define polyno-
mials and then perform a completion in the L, norm. A key difference
is that our norm is defined on the sequence of coefficients whereas in the
Hilbert space case, one uses the L, norm which is defined in terms of
integration.

In the resulting Banach space there are several formal entities that
were adjoined as part of the norm-completion process. We need to discuss
in what sense these formally-defined entities can be regarded as bona-fide
functions. Let Wi,...,W,,... be an infinite sequence of subspaces of
B, each embedded in the previous. Assume, in addition, that all these
spaces have finite codimension. Now assume that there is a sequence of
cylindric holomorphic functions, f,,, on B obtained from a holomorphic
function, f on each of the quotient spaces B /W;. Finally, assume that
the sequence || f, || of (real) numbers is convergent. Such a sequence
of cylindric holomorphic functions defines a holomorphic function on B.
We call this function f. We need to exhibit f as a map from B to C.
Accordingly, let z be a point of B. For each of the functions f, we
have |f.(z)| < || fn ||. Since the sequence of norms converges we have
the sequence f,(&) converges absolutely and hence converges. Thus the
function f qua function is given at each « of B by lim,,_,, fn(z). However,
in order to use the word “function” we need to show that the power-series
has a domain of convergence. Unfortunately, it may not have a non-trivial
domain of convergence but, in a sense to be made precise, it comes close
to having a non-trivial domain of convergence.

The power-series representation of the function f is given as follows.
It depends, in general, on infinitely many variables but each term in the
power series will be a monomial in finitely many variables. Consider
the coefficient of zfll zf: in the expansion of f. In all but finitely
many of the f, all the indicated variables will appear in their power-
series expansions. Consider the coefficients of this term in each power
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series; this forms a sequence of complex numbers o, where a, is 0 if
there is no such term in the expansion of f,. Since |a,| < || fa || the
sequence a, converges absolutely and hence converges to, say, . This is
the coefficient of 2} ... 2] . in the power-series expansion of f.

Consider the coordinates zj,...,2,. This defines an n-dimensional
subspace of the Banach space, which we call U,,. Now consider the power-
series for f. It defines a family of holomorphic functions f* where f"
is defined on the subspace U, and is obtained by retaining only those
terms in the power-series expansion of f which involve variables among
Z1y---y2n. These are analytic functions on the U, and, as such, have
non-trivial domains of convergence. However, as n increases the radii of
convergence could tend to 0. So we have the slightly weaker statement
than the usual finite-dimensional notion; instead of having a non-zero
radius of convergence in the Banach space we have a non-zero radius
of convergence on every finite-dimensional subspace. If one uses entire
functions, rather than analytic functions, at the starting point of the
construction, then one can show that the resulting functions are entire;
see page 67, theorem 1.13, of the book by Baez, Segal and Zhou [BSZ92)].
Unfortunately when using the representation of elements of Fock space
one may carry out simple operations that do not produce entire functions
so we cannot just choose to work with entire functions. Nevertheless,
many common functions, most notably the exponential, are entire,

Given a bona fide holomorphic function one can express it as a power
series, The coeflicients are calculated in the usual way, viz. by using
Taylor’s theorem

1 o" 11 i
£ = BT bt i

.. .ik!(ailzl Oz
Since the mixed partial derivatives commute (the functions are holomor-
phic and hence certainly differentiable enough) the partial derivatives
are, concretely speaking, symmetric arrays. Abstractly speaking this just
means that they are elements of the symmetrized tensor product.

We can write this as follows.

Theorem 15 A holomorphic function can be represented by its power-
series expansion where the nth term in the POWeEr-SETries erpansion is
symmetrized nth derivative: ,

f=s(1/k)D®y

where the notation D) f means symmetrized Lt derjvative of f.
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The symmetrized derivatives live in the symmetrized tensor products
of B with itself. One thus has a correspondence with the standard Fock
representation and the notion of holomorphic function since in each case
one has a string of symmetrized vectors.

5.1 A Digression on Complex Structures

This section can be skipped on a first reading®; however, the reader who
feels queasy about all the explicit coordinate dependence in the definitions
so far may find this section comforting. There is no need to start with
complex vector spaces. One could have used real vector spaces from the
outset. In order to sketch this briefly we begin with the notion of a
complex structure on a vector space.

Definition 17 Let V be a real vector space. A complex structure is a
linear operator J : V — V such that J? = —1.

An example of a complex structure on R? is

(%)

It is immediate that ¥V must be even-dimensional or infinite-dimensional
if a complex structure exists on it. A given vector space may have several
different complex structures defined on it.

One can go back and forth between real vector spaces equipped with
complex structures and complex vector spaces in the following way. Sup-
pose that (V,J) is a real vector space equipped with a complex struc-
ture. Now we can formally define the “complexification” of V as a vector
space Ve = V'@ V" where V' and V" are copies of V and multiplication
by complex numbers is given by (x + iy) * {a,b) = {(za — by, zb+ ay).
Now we can define a linear operator P on V¢ by the formula P(a,b) =
(1/2)a + Jb,b — Ja). It is easy to verify that P defines a projection op-
erator on V. It defines a subspace of V-, which is, as a real vector space,
isomorphic to V. Similarly, given a complex vector space W we can con-
struct a real vector space which is isomorphic to W, as a real vector space,
and equip it with a complex structure which will give us back W when we
apply the construction above to it. We first form the direct sum W @ W.
Now we define a complex structure on this space by J{a,b) = (ia, —ib). It
is easy to check the claims made. The upshot is that one can talk about

Sand every subsequent reading as well.
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real vector spaces equipped with complex structures or about complex
vector spaces interchangably.

The final piece of mathematics that we need is the Lie derivative from
classical differential geometry. Developing the definitions from scratch
would involve a long digression. Fortunately the ideas are simple so we
will give an intuitive account. In what follows the word “smooth” is
meant to signify infinitely differentiable. Consider a smooth manifold;
a curved surface is an excellent model to keep in mind. Suppose that
one has a smooth vector field on this manifold; that is to say a smooth
assignment of a vector at every point on the manifold. Classical results
from differential equations say that there is a family of nonintersecting
curves that fill the manifold and such that the curves are everywhere
tangent to the given vector field. Now these curves are all parametrized
by a real parameter say t. If we fix a value for ¢, we can define a smooth
bijective map 1; of the manifold to itself (a so-called “diffeomorphism”)
which is defined by moving each point ¢ units along the unique curve
passing through it. We can make the map s act on functions defined on
V as follows: ¥}(f) = f oy, for f a complex-valued function defined on
V. We can now define the Lie derivative of f along the vector field u at
the point p as the limit

L,f = lim

t—0

Vi f)(p) = f(p)
¢

This gives another function from V to the complex numbers. Intuitively
we imagine that the given vector field, u, defines a flowing fluid. The
vector at each point defines the velocity of the fluid locally and the stream-
lines of the fluid give the family of curves mentioned above. The Lie
derivative measures changes that an observer flowing with the fluid would
see.

For us the Lie derivative tells us how to define changes seen “when
travelling along the direction defined by a vector field”. Now recall what is
meant by an analytic function in ordinary complex analysis. A complex-
valued function of two real variables,  and ¥, is analytic if it depends
only on the complex variable z = z +{y and not on the conjugate variable
Z = z — iy. The Cauchy-Riemann equations say this precisely. The Lie
derivative is what we need in order to do this in the infinite-dimensional
case.

Definition 18 Let B be a Banach space over the complex numbers. Now
let J be a complex structure on this space. We call a vector v holomor-
phic if Jv = iv and anti-holomorphic if J»v = —iv. If we have a
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real vector space V', equipped with a complex structure, we can define a
holomorphic or an anti-holomorphic vector in the same way.

A holomorphic vector plays roughly the role of a complex variable while
an anti-holomorphic vector plays the role of a complex-conjugate vari-
able. Now we can state the infinite-dimensional analogue of the Cauchy-
Riemann conditions.

Definition 19 A function f : V — C is holomorphic if (i) it is dif-
ferentiable and (ii) for every anti-holomorphic vector field v we have
£.,f = 0. An equivalent condition is £3,f = i.£,f for holomorphic vector
fields v.

It is easy to check that the latter form of the second condition gives the
usual Cauchy-Riemann equations in the one-dimensional case by choosing
the vector fields appropriately.

6 The Physical Origin of Fock Space

The Fock space constructions described in the previous sections were in-
dependently invented by physicists and mathematicians. The symmetric
Fock space (called the bosonic Fock space by physicists) is well known
to mathematicians as the symmetric tensor algebra whereas the antisym-
metric Fock space (fermionic Fock space) was invented by Grassman, at
least in the finite-dimensional case, under the name of exterior algebra or
alternating algebra. In this section we describe the role of Fock space in
quantum field theory. In order to prevent intolerable regress in definitions
we assume that the reader has an at least intuitive grasp of differential
equations, the definition of a smooth manifold and associated concepts
like that of a smooth vector field”

We begin with a brief discussion of quantum mechanics and classical
mechanics. In classical mechanics one has systems which vary in time.
The role of theory is to describe the temporal evolution of systems. Such
temporal evolution is governed by a differential equation. The fact that
one uses differential equations says something fundamental about the lo-
cal nature of the dynamics of physical systems, at least according to con-
ventional classical mechanics. In dealing with differential equations one
has to distinguish between quantities that are determined and quantities
that may be freely specified: the so called “initial conditions”. Exper-
iment tells one that systems are described by second-order differential

"Remarks requiring a more sophisticated vocabulary will appear as footnotes.
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equations and hence that the functions being described and their first
derivatives, at a given point of time, are part of the initial conditions.
The space of all possible initial conditions is called the space of possible
states or “phase” space, and is the kinematical arena on which dynamical
evolution occurs®. A fundamental mathematical assumption is that the
phase space is a 2n dimensional smooth manifold®. The points of phase
space are called states. If the system is a collection of, say 7, particles, the
states will correspond to the 42 numbers required to specify the positions
and the velocities of each of the particles in three-dimensional space.

Through each point in phase space is a vector giving rise to a smooth
vector field called the Hamiltonian vector field. One can draw a family of
curves such that at every point there is exactly one curve passing through
that point and the Hamiltonian is tangent to the curve at that point.
Roughly speaking, the vector field defines a differential equation and the
curves represent the family of solutions where each point represents a
possible specification of initial conditions. An observable is a physical
quantity that is determined by the state. As such it corresponds to a
real-valued function on phase space. A typical example is the total energy
of a system. Most of experimental mechanics is aimed at determining the
Hamiltonian. In the formal development of analytical mechanics there is
a special antisymmetric 2-form called the symplectic form which plays a
fundamental mathematical role but is hard to describe in an intuitive or
purely physical way.

In quantum mechanics, the above picture changes in the following
fundamental ways. The observables become the fundamental physical
entities. These are defined to form a particular subalgebra of an alge-
braic structure called a C*-algebra. The key point is that this algebra
is not commutative, unlike the algebra of smooth functions on a mani-
fold. Furthermore, the failure of commutativity is directly linked to the
symplectic form; this was Dirac’s contribution to the theory of quan-
tum mechanics. Thus, structures available at the classical level provide
guidance as to what the “correct” C*-algebra should be.

There is a representation of this algebra as the algebra of operators on
a Hilbert space. The space of states acquires the structure of a Hilbert
space and becomes the carrier of the representation of the C*-algebra.
One presentation of this abstract Hilbert space is as the space of square-

8Sometimes one has a more complicated situation in which the phase space is con-
strained in such a way that it cannot be simply defined as a manifold. These are called
non-holonomic constraints and correspond to such familiar situations as skating and
rolling.

9 Actually it has the structure of the cotangent bundle of a smooth n-manifold.
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integrable complex-valued functions on a suitable underlying space; for
example the space of possible configurations of a system. The space of
states has acquired linear structure; this means that one can add states
reflecting the intuition that in quantum mechanics a system can be in
the superposition of two (or more) states. The inner product measures
the extent to which two states resemble each other. Finally the fact that
one has complex functions is strongly suggested by the observation of
interference phenomena in nature.

An observable is a self-adjoint operator. The link between the math-
ematics and experiment is the following. If one attempts to measure the
observable O for a system in state i one will obtain an eigenvalue of O.
Self-adjoint operators have real eigenvalues so we will get a real-valued re-
sult. If ¢ is an eigenvector with eigenvalue o, then, with no indeterminacy
or uncertainty, one will obtain the value a. If % is not an eigenvector,
one can express ¥ as a linear combination of eigenvectors in the form
¥ = Ya;v; where the 9; are assumed to be eigenvectors with eigenvalues
a;. The result of measuring O will be «; with probability |ai|2. It is
important to keep in mind that the absolute squares of the a; correspond
to probabilities but it is the a; themselves that enter into the linear com-
binations of states. This interplay between the complex coefficients and
the interpretation of their squares as probabilities is what distinguishes
the probabilistic aspects of quantum mechanics from statistical mechanics
which also has a probabilistic aspect but where one directly manipulates
probabilities.

The dynamics of systems is described by a first-order differential equa-
tion called Schroedinger’s equation. Thus, the evolution of states in quan-
tum mechanics is determinate, just as in classical mechanics. The inde-
terminacy usually associated with quantum mechanics appears in the fact
that the state of a system may not be an eigenstate of the observable being
measured so the outcome of the measurement may be indeterminate.

Quantum mechanics is designed to handle systems in which the num-
ber of interacting entities (usually called “particles”) is fixed. On the
other hand, experiment tells us that at sufficiently high energies parti-
cles may be created or destroyed. Quantum field theory was invented to
account for such processes. The original formulations of this theory due
to Dirac, Heisenberg, Fock, Jordan, Pauli, Wigner and many others was
quite heuristic. Now a reasonably rigourous theory is available; see the
book by Baez, Segal and Zhou [BSZ92] for a recent exposition of quantum
field theory.

The first need in a many-particle theory is a space of states which can
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describe variable numbers of particles; this is what Fock space is [Ge85].
The second ingredient is the availability of operators that can describe
the creation and annihilation of particles. Of course, there is much more
that needs to be said in order to see how all this formalism translates into
calculations of realistic physical processes but that would require a very
thick book which, in any case, has been written many times over.

Given a Hilbert space H in quantum mechanics representing the states
of a single particle one can construct a many-particle Hilbert space as
F(H). Suppose that ¢,¢» € H; one interprets the element ¥ @, ¢ of
H ®; H as a two-particle state with one particle in the state ¥ and the
other in the state ¢. Similarly for the other summands of F(H). The
reason for the symmetrization is that one is dealing with indistinguishable
particles so that the n-particle states have to carry representations of
the permutation group. Thus one could have particle states that were
symmetric or antisymmetric under interchange leading to the bosonic or
fermionic Fock spaces respectively. It is a remarkable fact that both types
of particles are observed in nature. Notice that ¥ A v is identically zero
hence one cannot have many-particle states in the antisymmetric Fock
space in which both particles are in the same one-particle state. This
is observed in nature as the exclusion principle. Fock space is the space
of states for quantum field theory and is constructed from the space of
states for quantum mechanics. |

The following interesting operators are defined on Fock space. Let
¥ = {Yo,%1,%2,...,¥n,...) be an element of F(H). Now let & be an
element of H. We define the operator C(c) by

C(a)p = (0,%00,vV2 91 @5 0y..., V0 + 1 @5 0,...)

This operator creates a particle in the state o. There is an analogous
operator A(o) which destroys a particle in state ¢. These two operators
are adjoint to each other. The fundamental algebraic relation between
them is A(¢)C(0)—C(0)A(c) = I where [ is the identity operator. From
these two we can define the operator N(o) = C(c)A(c). Let v, be a state
with n particles in the state ¢ and with no other particles. For the rest
of the paragraph we drop explicit mention of ¢. Now Av, = v/n v,
and Cv, = v/n+1 vy41, hence we have N v, = nv,. Thus v, is an
eigenstate of N with eigenvalue n; for this reason N is called the number
operator. Now we also have NAwv, = (AC - INAv, = A(CA - I)v, =
A(N - v, = (n—1)A v,. In other words, A v, is also an eigenstate of N
with eigenvalue (n — 1). This justifies the name “annihilation” operator.
A similar calculation can be done for the creation operator. If we are
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successful in developing a theory of reduction of proof nets in terms of
operator algebras, in the sense of Girard’s geometry of interaction, we will
have the A and C operators available. We hope that these can be used to
give a quantitative handle on resource consumption during computation.

The presentation of Fock space above emphasized the concept of
many-particle states. Mathematically, however, F(H) is just a Hilbert
space and can be presented differently. As we have shown in the last
section, it can be presented as the space of holomorphic functions of a
Hilbert space (the details are somewhat different from the Banach space
case but the ideas are essentially the same). The space of holomorphic
functions has as its inner product

(9,f) = —2711_—2 / f(2)g(Z)e dz dz.

(See [IZ80] page 435, for example.) What do the creation and annihilation
operators look like from this perspective? For simplicity, let us look at
power series in a single variable z. This amounts to only looking at the
many-particle states of the form o tensored with itself. The creation
operator is just z#(.) while the annjhilation operator is just d(.)/dz. One
can easily check that (AC — CA)f = d(z+ f)/dz — zxdf/dz = f; in
other words the basic algebraic relation holds. Furthermore one can ask
what the eigenstates of A and C look like. Clearly the eigenstate of C
is just the zero vector. The eigenstate of A is the state represented by
the holomorphic function €. These states actually exist in nature and
are called “coherent” states; they occur, for example, in lasers. The key
point about coherent states is that they “look classical”; one can remove
a particle without changing the state. As such they bear a superficial
resemblance to the role of ! formulas in linear logic.

7 Conclusion

To summarize the results we have claimed in this paper, we have pro-
duced models of the following fragments of linear logic. First, in finite-
dimensional vector spaces we have a complete model of classical linear
logic, albeit with a compact category, so that the tensor and par are
identified, as are ! and ?. In the category of symmetric Banach alge-
bras we have a model of the ®, x,&®, ! fragment. This category cannot
be endowed with closed structure, since Hom(X,Y) = Hom(I @ X,Y) =
Hom(1,X —oY);in this category the unit I for ® is also the initial object
so the last hom set would have to be a singleton, clearly not the case for
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arbitrary X,Y. The closely related BANCON has several very pleasant
features as a model of the multiplicative and additive fragment of linear
logic—it is a rare example of a category of linear spaces which is neither
additive nor compact—but unfortunately it is not possible to extend this
to a model of ! on the algebra category as we did with BANACH as
the exponential isomorphism fails there. In HILBERT we get results
analagous to those with BANACH, modelling the ®, x, @, ! fragment in
the category of algebras. In addition to producing these models, we have
described a mathematical representation for ! using holomorphic func-
tions which suggests that one might profitably think of computability in
terms of analyticity rather than continuity. Furthermore the mathemat-
ical structures described in this paper arise from quantum field theory
and are suggestive of links with that subject.

It is crucial that one appreciate the differences between our work and
that of Girard in [G89]. He has also used Banach algebras but all proofs
are represented in a single Banach algebra, whereas we model formulas
as individual algebras, with proofs as algebra homomorphisms. That is
to say, we work in the category of Banach algebras, rather than inside a
particular algebra. His major achievement is modelling cut elimination
in terms of operator algebras. We on the other hand model provability
in the appropriate fragment of linear logic.

Qur next goal is to model the proof theory of linear logic in the spirit
of Geometry of Interaction. Rather than following Girard, we will be
guided by the following intuitions which are suggested by the physical
interpretation of Fock space. We think of formulas as representing states,
that is to say elements of a Fock space; a proof represents the process of
interaction between particles in the initial state resulting in the particles
ohserved in the final state. Mathematically the process is described by a
combination of creation and annihilation operators. Proof normalization
transforms processes into “observably equivalent” processes. In partic-
ular, we hope that our version of such a theory will permit a sharper
analysis of complexity of computations.
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The following correction appeared in "Fock Space: a Model of Linear Exponential Types"
(Blute-Panangaden-Seely):

Remark 16 We wish to point out an error in an earlier draft of this paper [BPS]. In that paper,
it is stated that the Fock construction is functorial on the larger category of Banach spaces and
hounded linear maps. In fact, when one applies the Fock construction to a map of norm greater
than 1, one might obtain a divergent expression. Thus, we are forced to work in the smaller category
of contractions.
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