
Math. Struct. in Comp. Science (2006), vol. 16, pp. 1049–1083. c© 2006 Cambridge University Press

doi:10.1017/S0960129506005676 Printed in the United Kingdom

Differential categories

R. F. BLUTE†, J. R. B. COCKETT‡ and R. A. G. SEELY§

†Department of Mathematics, University of Ottawa,

585 King Edward St., Ottawa, ON, K1N 6N5, Canada

Email: rblute@mathstat.uottawa.ca

‡Department of Computer Science, University of Calgary,

2500 University Drive, Calgary, AL, T2N 1N4, Canada

Email: robin@cpsc.ucalgary.ca

§Department of Mathematics, McGill University, 805 Sherbrooke St.,

Montréal, PQ, H3A 2K6, Canada

Email: rags@math.mcgill.ca

Received 3 July 2005; revised 31 May 2006

Following work of Ehrhard and Regnier, we introduce the notion of a differential category:

an additive symmetric monoidal category with a comonad (a ‘coalgebra modality’) and a

differential combinator satisfying a number of coherence conditions. In such a category one

should imagine the morphisms in the base category as being linear maps and the morphisms

in the coKleisli category as being smooth (infinitely differentiable). Although such categories

do not necessarily arise from models of linear logic, one should think of this as replacing the

usual dichotomy of linear vs. stable maps established for coherence spaces.

After establishing the basic axioms, we give a number of examples. The most important

example arises from a general construction, a comonad S∞ on the category of vector

spaces. This comonad and associated differential operators fully capture the usual notion of

derivatives of smooth maps. Finally, we derive additional properties of differential categories

in certain special cases, especially when the comonad is a storage modality, as in linear logic. In

particular, we introduce the notion of a categorical model of the differential calculus, and show

that it captures the not-necessarily-closed fragment of Ehrhard–Regnier differential λ-calculus.

1. Introduction

Linear logic (Girard 1987) originated with Girard’s observation that the internal hom in

the category of stable domains decomposed into a linear implication and an endofunctor:

A ⇒ B = !A −◦ B.

The categorical content of this observation, viz., the interpretation of ! as a comonad

and, given appropriate coherence conditions, the fact that the coKleisli category was

cartesian closed, was subsequently described in Seely (1989). Thus, the category of stable

domains came to be viewed in a rather different light as the coKleisli category for the

comonad ! on the category of coherence spaces. Coherence spaces, of course, provided,

for Girard, the principal model underlying the development of linear logic.

More recently, in a series of papers, Ehrhard and Regnier introduced the differential

λ-calculus and differential proof nets (Ehrhard 2001; Ehrhard and Regnier 2005; Ehrhard

and Regnier 2003; Ehrhard 2005). Their work began with Ehrhard’s construction of

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1050

models of linear logic in the categories of Köthe spaces and finiteness spaces. They

noted that these models had a natural notion of differential operator and made the key

observation that the logical notion of ‘linear’ (using arguments exactly once) coincided

with the mathematical notion of linear transformation (which is essential to the notion of

a derivative, as the best linear approximation of a function). This observation is central

to the decision to situate a categorical semantics for differential structure in appropriately

endowed monoidal categories.

Our aim in this paper is to provide a categorical reconstruction of the Ehrhard–Regnier

differential structure. In order to achieve this we introduce the notion of differential cat-

egory, which captures the key structural components required for a basic theory of differ-

entiation. As with Ehrhard–Regnier models, the objects of a differential category should be

thought of as spaces that possess a modality (a comonad)†; the maps should be thought of

as linear, while the coKleisli maps for the modality should be interpreted as being smooth.

It is important to note that differential categories are, essentially, a more general

notion than that introduced by Ehrhard and Regnier in two important respects. First,

differential categories are monoidal, rather than monoidal closed or ∗-autonomous,

additive categories. This is crucial, as it allows us to capture various ‘standard models’ of

differentiation that are notably not closed. Second, we do not require the ! comonad to

be a ‘storage’ modality in the usual sense of linear logic (as described by Bierman (1995),

for example). Specifically, we do not require the comonad to be monoidal, although we

do require that the cofree coalgebras carry the structure of a commutative comonoid:

these we call coalgebra modalities. Again, this seems necessary, as the standard models

we consider do not necessarily give rise to a full storage modality. That said, we do agree

that the special case of storage modalities has an important role in this theory.

It is natural to ask what the form of a differential combinator should be in a monoidal

category with a modality ! . A smooth map from A to B is just a linear map f: !A ��B.

To see what the type of its differential should be, consider a simple example from

multivariable calculus: f(x, y, z) = 〈x2 + xyz, z3 − xy〉. This is a smooth function from

IR3 to IR2. Its Jacobian is
(

2x + yz xz xy

−y −x 3z2

)
. Given a choice of x, y and z, that is, a point

of IR3, we obtain a linear map from IR3 to IR2. But the assignment of the linear map

for a point is smooth. So, given a map f:A ⊆ IRn �� IRm, one gets a smooth map

D(f):A �� L(IRn, IRm): for a point x ∈ A, D(f) is given by the Jacobian of f at x. In

general, the type of the differential should be D(f): !A �� A −◦ B. As we are working in

not-necessarily-closed categories, we simply transpose this map, and obtain a differential

combinator of the form:
f: !A �� B

D[f]:A ⊗ !A �� B
.

So, from our perspective, a differential category will be an additive symmetric monoidal

category with coalgebra modality and a differential combinator, as above, which must

satisfy various equations that are familiar from first year calculus.

† In fact, Ehrhard and Regnier (2005) does not require a comonad, since they do not have the promotion

rule in their system. But they indicate that their system extends easily; this is not the significant difference

between the two approaches. In fact, Ehrhard and Regnier (2003) does have promotion, via the λ calculus.

Differential categories 1051

Note also that this example suggests

Smooth(IR3, IR2) = Lin(IR2, S(IR3))

where S(V) = smooth functions from V to R. Consider f as above, a smooth map

IR3 �� IR2, which may be thought of as a pair of smooth maps IR3 �� IR and hence as

a linear map IR2 �� S(IR3). We shall see this again in Proposition 3.5.

In Section 2 we introduce these notions and, in particular, we note that it suffices to

differentiate the identity on !A, as all other differentials can be obtained from this by

composition. This gives the notion of a deriving transformation, which was introduced

in Ehrhard (2001). Given the appropriate coherence conditions, we show that having a

deriving transformation is equivalent to having a differential combinator. The remainder

of Section 2 is devoted to examples. We show that the category of sets and relations and

the category of sup-lattices have very simple differential structures. For a more significant

example, we take (the opposite of) the category of vector spaces. The free commutative

algebra construction here provides us with a comonad, and when elements of that algebra

are interpreted as polynomials, the usual notion of the derivative of polynomials provides

a differential combinator.

In Section 3, we extend this idea to general smooth functions by introducing a new

construction, which we call S∞. This is a general construction, which, given a polynomial

theory over a rig R, allows one to produce a coalgebra modality on the opposite of the

category of R-modules. If, furthermore, the polynomial theory has partial derivatives, and

is thus a differential theory, this can be translated into a differential combinator associated

with the modality. The construction shows how to associate a differential combinator with

any reasonable notion of smoothness.

In Section 4, we explore certain special cases of the notion of a differential category.

In particular, we consider the case where the comonad actually satisfies the additional

requirements of being a storage modality, that is, a model of the exponential modality

of linear logic. In the case where the category additionally has biproducts, we define the

notion of a categorical model of the differential calculus, and show that this structure char-

acterises the not-necessarily-closed version of the Ehrhard–Regnier differential λ-calculus.

2. Differential categories

Throughout this paper we will be working with additive† symmetric monoidal categories,

by which we mean that the homsets are enriched in commutative monoids so that we

may ‘add’ maps f + g, and there is a family of zero maps, 0. Recall that there are

important examples of categories that are additive in this sense but are not enriched in

Abelian groups: sets and relations (with tensor given by cartesian product), suplattices,

and commutative monoids are all examples. To be explicit, the composition in additive

† We should emphasise that our ‘additive categories’ are commutative monoid enriched categories, rather than

Abelian group enriched; in fact, some people might prefer to call them ‘semi-additive’. Furthermore, we do

not require biproducts as part of the structure at this stage. In particular, our definition is not the same as

the one in Mac Lane (1971).

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1052

categories, which we write in diagrammatic order, is ‘biadditive’ in the sense that h(f+g) =

hf + hg, (f + g)k = fk + gk, h0 = 0 and 0k = 0. The tensor ⊗ is assumed to be enriched

so that (f + g) ⊗ h = f ⊗ h + g ⊗ h and 0 ⊗ h = 0.

A differential category is an additive symmetric monoidal category with a coalgebra

modality and a differential combinator. A coalgebra modality often arises as a ‘storage

modality’, and a monoidal category with such a modality is a model of linear logic.

However, we have deliberately avoided that nomenclature here because the modalities

we consider are not restricted to commutative coalgebras, nor do they necessarily satisfy

the coherences expected of storage. Recall that, for a storage modality, the coKleisli

category is a cartesian category that is canonically linked to the starting category by

a monoidal adjunction. This adjunction turns the tensor in the original category into a

product and produces the storage isomorphism (sometimes called the Seely isomorphism):

! (A × B) ∼= !A ⊗ !B.

It is because the computational intuition of Girard’s ‘storage’ modality does not have

significant resonance with the developments in this paper that we have chosen to use the

nomenclature derived from a more traditional source, though storage modalities are an

important basis for some of the examples. When a category is additive or, more precisely,

commutative monoid enriched, the comonoid associated with the modality is precisely

what the majority of algebraists would simply call a coalgebra, and it seems natural to em-

phasise, in this context, these connections. We shall use the term ‘storage modality’ when we

wish to impose the extra coherence conditions usual in categorical models of linear logic.

The notion of a differential combinator is the new ingredient of this work and is

described below. Before introducing this notion it is worth emphasising the peculiar role

the modality plays in this work. Here, as in Ehrhard’s original work, the modality is

a comonad for which the coKleisli category is regarded as a category of differentiable

functions: the maps of the parent category are the linear maps. The idea of a differential

combinator is that it should mediate the interaction between these two settings.

2.1. Coalgebra modalities

Definition 2.1. A comonad (! , δ, ε) on an additive symmetric monoidal category, �, is

a coalgebra modality when each object !X comes equipped with a natural coalgebra

structure given by

∆: !X �� !X ⊗ !X e: !X �� �

where � is the tensor unit. This data must satisfy the following basic coherences:

1. (!X,∆, e) is a comonoid:

!X

∆

�� ����������

����������

����������

����������

!X !X ⊗ !X
1⊗e

��
e⊗1

�� !X

!X
∆ ��

∆

��

!X ⊗ !X

∆⊗1

��
!X ⊗ !X

1⊗∆
�� !X ⊗ !X ⊗ !X

Differential categories 1053

2. δ is a morphism of these comonoids:

!X
δ ��

e
����

��
��

��
!!X

e
����

��
��

��

�

!X
δ ��

∆

��

!!X

∆

��
!X ⊗ !X

δ⊗δ
�� !!X ⊗ !!X

Note that we have not assumed that ! is monoidal or that any of the transformations

are monoidal. This may occasionally be the case, but, in general, it need not be so.

A coKleisli map !A �� B will be viewed as an abstract differentiable map from

A �� B so that the coKleisli category �! is the category of abstract differentiable maps

for the setting. Of course, for this to make sense we shall need more structure, which will

be introduced in the next subsection. Meanwhile, we can give some examples of coalgebra

modalities on additive categories.

Example 2.2.

1. For any cartesian category the identity monad is a coalgebra modality where the

coalgebra structure is given by the diagonal and final map on the product.

2. A storage modality (the ‘bang’ from linear logic) on a monoidal category is a rather

special example. These are discussed further in Section 4.

3. One way to obtain a coalgebra modality is to take the dual of an algebra modality.

There are a number of such examples from commutative algebra (see Lang (2002)):

(a) the free algebra T (X) =
⊕∞

r=0 X
⊗r

, where ⊕ denotes the biproduct

(b) the free symmetric algebra Sym(X) =
⊕∞

r=0 X
⊗r

/Sr

(c) the ‘exterior algebra’ Λ(X) =
⊕∞

r=0 X
⊗r

/A is the free algebra generated by the

module X subject to the relation that monomials v1v2 . . . vn = 0 whenever vi = vj
where i �= j. This makes the algebra anti-commute in the sense that xy = −yx.

We will use this source of examples in Section 3 and provide a general way of

constructing such monads that will allow us to capture all the classical notions of

differentiation.

In addition, there are a number of other, less standard, examples, which we shall briefly

describe in the course of developing the general theory.

2.2. Differential combinators

Definition 2.3. For an additive symmetric monoidal category C with a coalgebra modality

! , a (left) differential combinator DAB: C(!A,B) �� C(A ⊗ !A,B) produces for each

coKleisli map f: !A �� B a (left) derivative DAB[f]:A ⊗ !A �� B:

!A
f �� B

A ⊗ !A
D[f]

�� B
,

which must satisfy the coherence requirements ([D.1] to [D.4] below), the principal one

of which is the chain rule.

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1054

It should be mentioned that if the monoidal category is closed, a differential combinator

can be re-expressed as

A ⊗ !A
D[f] �� B

!A
D̂[f]

�� A −◦ B
.

In other words, from the original differentiable map, one obtains a new differentiable map

into the space of linear transformations. Intuitively, this associates with each point of the

domain the linear map that approximates the original map at that point.

A differential combinator must satisfy the usual property of a functorial combinator:

namely, that it is additive, in other words D[0] = 0 and D[f + g] = D[f] + D[g], and it

carries commuting diagrams to commuting diagrams, so DAB is natural in A and B:

!A

!u

��

f �� B

v

��
!C g

�� D

A ⊗ !A

u⊗!u

��

D[f] �� B

v

��
C ⊗ !C

D[g]
�� D

In addition, a differential combinator must satisfy the following four identities†:

[D.1] Constant maps:

D[eA] = 0 .

[D.2] Product rule:

D[∆(f ⊗ g)] = (1 ⊗ ∆)a−1
⊗ (D[f] ⊗ g) + (1 ⊗ ∆)a−1

⊗ (c⊗ ⊗ 1)a⊗(f ⊗ D[g]) .

where f: !A �� B, g: !A �� C , and a⊗, c⊗ are the associativity and commut-

ativity isomorphisms.

[D.3] Linear maps:

D[εAf] = (1 ⊗ eA)uR⊗f

where f:A �� B and u⊗ is the unit isomorphism.

[D.4] The chain rule:

D[δ !f g] = (1 ⊗ ∆)a−1
⊗ (D[f] ⊗ δ !f)D[g] ,

that is

!A
δ �� !!A

!f �� !B
g �� C

A ⊗ !A
1⊗∆

�� A ⊗ (!A ⊗ !A)
a−1

⊗

�� (A ⊗ !A) ⊗ !A
D[f]⊗(δ !f)

�� B ⊗ !B
D[g]

�� C
.

† Recall that we use ‘diagrammatic notation’: fg means ‘first f, then g’.

Differential categories 1055

Each of these identities should accord immediately with the intuition of a derivative, as

they are quite literally simply a re-expression in categorical terminology of the standard

requirements of a derivative. Constant functions have derivative 0. The tensor of two

functions on the same arguments is morally the product of two functions (on the unit �
this is literally true), thus the second rule is just the familiar product rule from calculus.

The derivative of a map that is linear is, of course, constant. The derivative of the

composite of two functions is the derivative of the first function composed with the

derivative of the second function at the value produced by the first function: in other

words, the chain rule holds.

2.3. Circuits for differential combinators

Readers of previous papers by the present authors will be familiar with our use of circuits

(or proof nets adapted to our context); a good introduction to our circuits, relevant to

their use here, are Blute et al. (1997) and Blute et al. (1996). It is no surprise that a similar

technique will work in the present situation: we may represent the differential operator

using circuits, using a ‘differential box’

�→
!A !A

B B

A !A

B

�
��

�
��

f f

Note that the naturality of D means (by taking u = 1) that one can move a component

in and/or out of the bottom of a differential box (and so, in a sense, the box is not really

necessary – we shall return to this point soon).

=

!A!A

B B

D D

AA !A!A �
��

�
��

�
��

�
��

ff

v v

The rules can also be represented as additive circuits:

[D.1] Constant maps:

!A

�

A !A

�

�
��

�
��

= 0eA

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1056

[D.2] Product rule:

!A

!A !A

!A

!A
!A

!A

!A

!A

B

B

C

C

A

AA

!A�
��

�
��

∆ ∆∆

⊗
⊗⊗B ⊗ C

B ⊗ CB ⊗ C
B ⊗ C

= +

�
�

�
�

�
�

�
�

�
�

�
�

f ffg gg

[D.3] Linear maps:

=

A !A

!A

B
B

A

A !A

B

�
��

�
��

����

�
�

�
�eε

f
f

[D.4] Chain rule:

B

B

B B

!B !B

C

C
C

C

A A!A

!A

!A !A

!A

!A

!A

!A

�
��

�
��

� �
� �

=

�
�

�
�∆

f

g

ff

g

Notice that in the chain rule we use two sorts of boxes: the differential box and the

comonad box (Blute et al. 1996). This latter box embodies following inference

!A
f �� B

!A
f�=δ !f

�� !B
,

Differential categories 1057

which allows an alternative presentation of a monad, which was originally given in

Manes (1976) and was used to describe storage modalities in Blute et al. (1996), following

the usage introduced in Girard (1987).

So we can restate our fundamental definition as follows.

Definition 2.4. A differential category is an additive symmetric monoidal category with a

coalgebra modality and a differential combinator.

As an example of a simple derivative calculation using circuits, we can calculate the

derivative of u2 (which the reader may not be surprised to discover is 2u · u′). We suppose

there is a commutative multiplication A ⊗ A
• �� A, so u2 means u • u. We make use of

some simple graph rewrites introduced in Blute et al. (1997); in particular, one can join

and then split two wires with tensor nodes without altering the identity of the circuit.

⊗

�
�

�
�⊗

=

A B

A B

A ⊗ B

A B

Then, using the other rewrites for a differential combinator, we obtain D(u2) =

!A

!A
!A !A!A

!A

A

A

A A

A

A

A A

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�∆

∆

∆ ∆

u

u

u uu

u

u u

•

•

⊗

• •

�
��

�
��

�
��

�
��

=

= +
�
�
�
�
�
�

�
�

�
�⊗

= 2u • u′

2.4. Deriving transformations

It is convenient for the calculations we will perform to re-express the notion of a

differential combinator in a more primitive form. A special case of the functorial property

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1058

of a differential combinator is the action on identity maps

!A
1!A

��

!u

��

!A

!u

��
!B

1!B

�� !B

A ⊗ !A

u⊗!u

��

D[1!A] �� !A

!u

��
B ⊗ !B

D[1!B]
�� !B

which produces a natural transformation below the line. The map D[1!A] produced in this

manner will be denoted dA for both simplicity and to remind us that it is natural in A.

This map occurs in another revealing instance of functoriality for the differential

combinator:

!A
1 ��

!1

��

!A

f

��
!A

f
�� B

A ⊗ !A

1⊗!1

��

dA �� !A

f

��
A ⊗ !A

D[f]
�� B

Consequently, the natural transformation dA actually generates the whole differential

structure. In terms of circuits, this says that the boxes are ‘bottomless’, which justifies

our circuit notation for the differential combinator, and motivates the following circuit

notation for the differential operator, with a component box representing the combinator

box ‘shrunk’ to having only an identity wire inside. We shall normally use the first

notation, which represents a differential box ‘pulled back’ past the identity; if we wish to

emphasise the component dA, we shall use the second notation. The third notation is the

equivalent presentation using a differential box.

dA ==

!A

!A!A

A

A A

!A

!A !A

!A

�
��

�
��

�
��

�
��

�
��

�
��

The properties of a differential combinator may be re-expressed succinctly in terms of

the following transformation.

Definition 2.5. For an additive category with a coalgebra modality, a natural transforma-

tion dX:X ⊗ !X �� !X is a (left) deriving transformation when it satisfies the following

Differential categories 1059

conditions:

[d.1] Constant maps: dAeA = 0

[d.2] Copying: dA∆ = (1 ⊗ ∆)a−1
⊗ (dA ⊗ 1) + (1 ⊗ ∆)a−1

⊗ (c⊗ ⊗ 1)a⊗(1 ⊗ dA)

[d.3] Linearity: dAεA = (1 ⊗ e)uR⊗
[d.4] Chaining: dAδ = (1 ⊗ ∆)a−1

⊗ (dA ⊗ δ)d ! A
.

For completeness, we have included all the coherence transformations in this definition:

in subsequent calculations we shall omit them (this will be without loss of generality in

view of MacLane’s coherence theorem), assuming that the setting is strictly monoidal.

Although we cannot drop the symmetry transformation c⊗:A ⊗ B �� B ⊗ A, this does

allow, for example, [d.2] to be stated a little more succinctly as

dA∆ = (1 ⊗ ∆)(dA ⊗ 1) + (1 ⊗ ∆)(c⊗ ⊗ 1)(1 ⊗ dA).

Of course, the circuit representation has the advantage of handling all the coherence

issues painlessly. These rules may be presented as circuits as follows.

[d.1] Constant maps:

e

=!A

�

A !A�
��

�
��

0

[d.2] Copying:

=
!A

A A A

!A

!A

!A !A
!A

!A
!A

!A!A�
��

�
��

�
��

�
��

�
�
�
�� +�

�
�
��

�
�

�
�

�
�

�
�

�
�

�
�

∆

∆ ∆

[d.3] Linearity:

ε

=!A

A

A A!A !A�
��

�
��

����

�
�

�
�e

[d.4] Chaining:

δ

δ

=!A

A

A

!!A
!!A

!A

!A !!A

!A

�
��

�
��

�
�

�
�∆

The main observation is then given by the following proposition.

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1060

Proposition 2.6. The following are equivalent:

(i) an additive symmetric monoidal category with a deriving transformation for its

coalgebra modality

(ii) a differential category.

Proof. It is easy to check that a differential category satisfies all these identities.

Conversely, the interpretation of the derivative using the natural transformation is, as

indicated above, D[f] = dAf. When dA is natural, this immediately provides a functorial

combinator D[f] = dAf. Checking that this combinator satisfies the requirements of a

derivative is straightforward with the possible exception of the chain rule:

D[δ !f g] = dAδ !f g

= (1 ⊗ ∆)(dA ⊗ δ)d!A !f g

= (1 ⊗ ∆)(dAf ⊗ (δ !f))dBg

= (1 ⊗ ∆)(D[f] ⊗ (δ !f))D[g].

This means that in order to check that we have a differential category, we may check

[d.1]–[d.4], which are considerably easier than our starting point.

2.5. Examples of differential categories

In the following subsections we give some basic examples of differential categories.

2.5.1. Sets and relations On sets and relations (where the additive enrichment is given by

unions and the tensor is given by cartesian product), the converse of the free commutative

monoid monad (commonly known as the ‘bag’ functor) is a storage modality with respect

to the tensor provided by the product in sets. There is an obvious natural transformation

dX:X ⊗ !X �� !X : x0, {[x1, . . . , xn]} �→ {[x0, x1, . . . , xn]}

given by adding the extra element to the bag.

Proposition 2.7. The category of sets and relations with the bag functor and the above

differential transformation is a differential category.

Proof (sketch). We proceed by checking the identities:

[d.1] dX produces only non-empty bags; e is the partial function whose domain is the

empty bag, which is sent to the point of �. So the composite of d with e is 0.

[d.2] The copying map relates a bag to all the pairs of bags whose union it is. If

one adds an element and then takes all the decompositions, it is the same as

taking all the decompositions before adding the element and then taking the union

of the possibilities provided by adding the element to each component of each

decomposition.

[d.3] ε: !X �� X is the relation that is the converse of the map that picks out the

singleton bag corresponding to x ∈ X, so ε is the partial function whose domain is

the singletons, which are mapped to themselves. Hence the only pairs that survive

dXεX are those that were paired with the empty bag.

Differential categories 1061

[d.4] The relation δ: !X �� !!X associates to a bag all bags of bags whose ‘union’ is

the bag. If one adds an extra element to a bag, when the bag is decomposed in this

manner, the added element must occur in at least one component. This means this

decomposition can be obtained by doing a binary decomposition that first extracts

the component to which the element is added on the left while the right component

contains what remains and can be decomposed to give the original decomposition

when the left component (with extra element) is added.

Exactly the same reasoning can be used to show that the power set monad, which is

also a coalgebra modality for relations, has a differential combinator obtained by adding

an element to each subset.

2.5.2. Suplattices The category of suplattices, sLat, that is, the category of lattices with

arbitrary joins and maps that preserve these joins, is a well-known ∗-autonomous category

(Barr 1979). It contains as a subcategory the category of sets and relations. It has a storage

modality, which can be described in various ways. It is the de Morgan dual of the free ⊕-

algebra functor (see Hyland and Schalk (2003)), but, more explicitly, it has the underlying

object !X =
⊕∞

r=0 X
⊗r

/Sr and comultiplication ∆: !X �� !X ⊗ !X, which, because

sums and product coincide in this category, is determined by maps

X⊗i+j

/Si+j
�� X⊗i

/Si ⊗ X⊗j

/Sj :

m∏
i=1

xk1

i �→
∨

ki=k′
i+k′′

i

m∏
i=1

x
k′
i

i ⊗ x
k′′
i

i .

Intuitively, this maps a monomial to the join of all the pairs that when multiplied give

the element. The fact that we are taking the joins over all possibilities makes the map

invariant under the symmetric group.

Clearly, !X is also the free commutative algebra with the usual commutative multi-

plication of monomials. This actually makes !X a bialgebra (we will develop these ideas

further in Section 4). Clearly, !X not only has a comonad structure but also the monad

structure that goes with being the free symmetric algebra. The comonad comultiplication

is certainly a coalgebra morphism, but it is not an algebra morphism and so fails to be a

bialgebra morphism.

There is an obvious map d:X ⊗ !X �� !X, which simply adds an element

by multiplying by that element (using the symmetric algebra structure). It is now

straightforward to prove the following proposition (the proof is, in fact, essentially the

same as for sets and relations, Proposition 2.7).

Proposition 2.8. sLat with respect to the above structure is a differential category.

2.5.3. Commutative polynomials and derivatives The category of modules, ModR (over

any commutative ring R) has a free non-commutative algebra monad � = (T , η, µ). On

Modop
R the free non-commutative algebra functor gives a comonad for which each T (X)

has a natural coalgebra structure. There is an ‘obvious’ differential structure on these

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1062

non-commutative polynomials, which is determined by where it takes the monomials:

d(xm1

1 xm2

2 . . . xmn
n) =

∑
x = xi
m = mi

mxm−1 ⊗ m1x
m1−1
1 . . . mi−1x

mi−1−1
i−1 mi+1x

mi+1−1
i+1 . . . mnx

mn−1
n .

Written in a more traditional form, this is just

d(f) =
∑

x ⊗ ∂f

∂x
.

This satisfies [d.1], [d.2], [d.3], but, significantly, fails [d.4]. However, if one examines

what goes wrong, it becomes clear that the free commutative algebra monad � = (S, η, µ)

should have been used.

The Eilenberg–Moore category for the commutative algebra monad is just the category

of commutative R-algebras. While the Kleisli category is the subcategory of polynomial

algebras. This gives, for a field K , the following diagram of adjoints (where the right

adjoints are dotted):

VecK
F�

��

F�

����������������������� (VecK)� = cPolyK��

��

G�

��

(VecK)� = cAlgK

G�

��

Here cAlgK is the category of commutative K-algebras, the Eilenberg–Moore category

of the monad �, and cPolyK is the Kleisli category of the monad �, which consists of

the polynomial algebras over K (Mac Lane 1971). If we consider the effect of � on the

opposite category Vecop
K , then � becomes a comonad and, also, a coalgebra modality

that has coKleisli category cPolyop
K . It is well known that both cPolyop

K and cAlgop
K are

distributive categories (Cockett 1993). In particular, this coKleisli category is the category

of polynomial functions, since a map f:V �� W in cPolyop
K is a map f:W �� S(V)

in VecK and as such is determined by its basis: if W = 〈w1, w2, . . .〉, then f is determined

by its image on these elements. But f(wi) =
∑

j=1,... ,m aij
∏

k=1,... ,l v
⊗skij

k where this is a finite

sum and vk are basis elements of V . Thus, our original function f may be viewed as a

collection, one for each wi, of polynomial functions in the basis of V . Composition in

cAlgop
K is by substitution of these polynomial functions.

Our aim is now to provide a very concrete demonstration of the following pro-

position.

Proposition 2.9. Vecop
K with the opposite of the free commutative algebra monad is a

differential category.

Differential categories 1063

Furthermore, this is the standard notion of differentiation for these polynomial func-

tions, so we have exactly captured the most basic notion of differentiation for polynomial

functions taught in every freshman calculus class. The proof will occupy the remainder of

this subsection.

Proof. Observe that if X is a basis for V , then Sym(V) ∼= K[X], the polynomial ring

over the field K (Lang 2002). We will only verify axioms [d2] and [d4]. Recall that we are

working in the opposite of the category of vector spaces, so the maps are in the opposite

direction.

They take on the following simple form:

— ∆ becomes the ring multiplication.

— e is the inclusion of the constant polynomials.

— ε is the inclusion V �� K[X] : v �→
∑n

i=1rixi, where v =
∑n

i=1rixi, where this time

the xi are regarded as basis elements of V .

— As already noted, d(f(x1, x2, . . . , xn)) =
∑n

i=1xi ⊗ ∂f
∂xi

.

— Remembering that a basis for a polynomial ring is given by monomials, a typical

basis element for !!V is given by [w1]
k1 [w2]

k2 . . . [wm]km . Then the map δ simply erases

brackets.

We shall now do an elementwise argument on basis elements. To verify [d2] we have,

for the left-hand side:

f ⊗ g
∆ �� fg

dV ��
n∑

i=1

xi ⊗ ∂(fg)

∂xi

=

n∑
i=1

xi ⊗
[
∂f

∂xi
g +

∂g

∂xi
f

]

=

n∑
i=1

xi ⊗ ∂f

∂xi
g +

n∑
i=1

xi ⊗ ∂g

∂xi
f .

For the right-hand side, we get

f ⊗ g
dV ⊗1+(c⊗⊗1)(1⊗dV) ��

n∑
i=1

xi ⊗ ∂f

∂xi
⊗ g +

n∑
i=1

xi ⊗ ∂g

∂xi
⊗ f

1⊗∆ ��
n∑

i=1

xi ⊗ ∂f

∂xi
g +

n∑
i=1

xi ⊗ ∂g

∂xi
f .

To verify [d4], for the left-hand side,

[w1]
k1 [w2]

k2 . . . [wm]km
δ �� wk1

1 wk2

2 . . . wkm
m

dV ��
n∑

i=1

xi ⊗ ∂(wk1

1 wk2

2 . . . wkm
m)

∂xi
.

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1064

The right-hand side yields

[w1]
k1 [w2]

k2 . . . [wm]km
d!V ��

m∑
j=1

kjwj ⊗ [w1]
k1 . . . [wj]

kj−1 . . . [wm]km

dV ⊗δ ��
m∑
j=1

n∑
i=1

kjxi ⊗ ∂wj

∂xi
⊗ wk1

1 . . . w
kj−1
j . . . wkm

m

1⊗∆ ��
m∑
j=1

n∑
i=1

xi ⊗ wk1

1 . . . kjw
kj−1
j

∂wj

∂xi
. . . wkm

m .

The result then follows immediately from the product rule.

It is worth noting that a direct proof, calculating the terms explicitly from an explicit

definition of dV ,

dV : !V �� V ⊗ !V :

{
e �→ 0∏m

i=1 v
si
ri

�→
∑m

j=1 vrj ⊗ sj ·
∏m

i=1 v
si−δij
ri

where δi,j is the Kronecker delta (δij = 1 when i = j and is zero otherwise), is also

possible, but the calculations are quite appalling!

3. The S∞ construction

One might well wonder whether there is not a better approach to understanding this sort

of differential operator on Vecop
K . After all, this calculation provides a theory that only

covers the polynomial functions: even at high school one is expected to understand more,

for example, the trigonometric functions!

Our aim in this section is therefore to show that, no matter what one cares to take as

a (standard) basis for differentiable functions, one can construct an algebra modality on

VecK for which there is a deriving transformation on Vecop
K that recaptures this notion of

differentiation. We call this the S∞ construction, as it allows one to realise various notions

of infinite differentiability as differential combinators on Vecop
K .

We shall break this programme down into stages. First we shall give a general method

of constructing monads on a module category, ModR , from an algebraic structure on a rig

R. A rig is a commutative monoid enriched over any additive system, and the algebraic

structure is what we shall call a polynomial theory. Next we will show that if this algebraic

structure supports partial derivatives, there is a corresponding (co)deriving transformation

on the module category so that the dual category with this structure becomes a differential

category.

3.1. Polynomial theories to monads

Let R be a commutative rig (that is a commutative monoid enriched over any additive

structure). Then ModR is a symmetric monoidal closed category with (monoidal) unit

R. Furthermore, there is an underlying functor U: ModR
�� Sets. We shall suppose

that U(R) is the initial algebra for an algebraic theory, �, which includes the theory

Differential categories 1065

of commutative polynomials over R. In other words, the constants of � are exactly the

elements of R, that is r ∈ R if and only if r ∈ �(0, 1) (where �(n, m) denotes the hom-set

of the algebraic theory). The multiplication and addition are binary operations of �, so

that ·,+ ∈ �(2, 1), which on constants are defined as for R and otherwise satisfy the

equations of being a commutative algebra over R. Note that �(n, 1) includes R[x1, . . . , xn]:

for instance, · and + correspond to x1x2 and x1 +x2. We call such a theory � a polynomial

theory over R.

An example of such a theory, which is central to this paper, for the field IR, is the

‘smooth theory’ of infinitely differentiable continuous real functions (and the same can be

done for the complex numbers). The smooth theory then has �(n, 1) = C∞(IRn, IR) with the

constants being exactly the points in IR. Substitution determined by the usual substitution

of functions gives the theory its categorical structure. This clearly introduces many more

maps between the powers of reals than are present in VecIR . We shall now show how to

construct a monad on this category to represent these enlarged function spaces.

We shall use the following Kleisli triple form of a monad.

Proposition 3.1 (Manes 1976). The following data defines a monad S: � �� �. An

object function S together with assignments

(X
f �� S(Y)) �→ (S(X)

f� �� S(Y)) (X ∈ �) �→ (X
ηX �� S(X))

satisfying three equalities: η�X = 1S (X), η f
� = f and f�g� = (fg�)�.

Note that these ensure that S is a functor and η and µ = 1�S (X) are natural transformations

that form a monad in the usual sense.

The object part of the monad, which we shall call S�, is defined as follows:

S�(V) = {h:V ∗ �� R | ∃v1, . . . , vn ∈ V , α ∈ �(n, 1) so h(u) = α(u(v1), . . . , u(vn))}

where V ∗ = V −◦ R where R is the monoidal unit in ModR . Note that h is really a map

between the underlying sets of V ∗ and R, and so is not generally going to be linear.

We may think of h as a ‘V -instantiation’ of α ∈ �(n, 1). The choice of v1, . . . , vn determines

scalars, so h may be viewed as α ∈ �(n, 1) operating on these scalars. But note that if V

is finite dimensional over a field R, one can choose a basis once-and-for-all, making the

choice of v1, . . . , vn unnecessary, so h may be identified with α (although different choices

of the vi may produce different h’s, the set of h’s is invariant). So in this case, S�(V) is,

essentially, the theory �: for instance, if � is the ‘pure’ theory of polynomial functions,

S�(V) (as a set) is the symmetric algebra Sym(V), since Sym(V) ∼= R[X], for X a basis

for V (see Lang (2002), for example). Once we know S�(V) is a monad, this will give

the symmetric algebra monad (Proposition 3.5). When V is infinite dimensional over a

field, v1, . . . , vn determines a finite dimensional subspace on which h can be viewed in this

finite dimensional way, and so again, for the pure polynomial function theory, we get the

symmetric algebra.

To show this is well defined, we must show that this set forms an R-module, in fact, a

commutative R-algebra.

Lemma 3.2. S�(V) as defined above is a commutative R-algebra.

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1066

Proof. We define h1 + h2 pointwise, where hi(u) = αi(u(vi1), . . . , u(vini)), as

(h1 + h2)(u) = α1(u(v11), . . . , u(v1n1
)) + α2(u(v21), . . . , u(v2n2

)) ,

which may be put into the required form with a suitable use of dummy variables, using

the additivity of the theory �. We define multiplication and multiplication by scalars

similarly, so, for example,

(r · h)(u) = r · α(u(v1), . . . , u(vn)) .

The requirement that scalar multiplication, addition, and multiplication satisfy the

equations expected of a commutative algebra now imply that this is an R-algebra.

Of course, this is still just a mapping on the objects. To obtain the monad, we need

to define the ()� operation and the η. Suppose f:V �� S�(W). We define f�: S�(V)
�� S�(W) as

[h: u �→ α(u(v1), . . . , u(vn))] �→ [h′: u′ �→ α(f(v1)(u
′), . . . , f(vn)(u

′))]

where f(vi) = [u′ �→ βi(u
′(v1i), . . . , u

′(vnii))], and η is evaluation:

η:V �� S�(V) : v �→ [u �→ u(v)],

taking α to 1.

We must start by checking that both f� and η are R-module maps. For η this is almost

immediate, so we shall focus on f�. We have

r · f�([u �→ α(u(v1), . . . , u(vn))]) = r · [u′ �→ α(f(v1)(u
′), . . . , f(vn)(u

′))]

= [u′ �→ r · α(f(v1)(u
′), . . . , f(vn)(u

′))]

= f�(r · [u �→ α(u(v1), . . . , u(vn))])

f�(h1 + h2) = f�([u �→ α1(u(v11), . . . , u(v1n1
)) + α2(u(v21), . . . , u(v2n2

))])

= [u′ �→ α1(f(v11)(u
′), . . . , f(v1n1

)(u′)) + α2(f(v21)(u
′), . . . , f(v2n2

)(u′))]

= f�([u �→ α1(u(v11), . . . , u(v1n1
))]) + f�([u �→ α2(u(v21), . . . , u(v2n2

))])

= f�(h1) + f�(h2) .

Proposition 3.3. S� is a commutative coalgebra modality on Modop
R .

Proof. We first check the monad requirements and that f� is a homomorphism of

algebras. The monad requirements are given by:

(η)�([u �→ α(u(v1), . . . , u(vn))]) = [u �→ α(η(u)(v1), . . . , η(u)(vn))]

= [u �→ α(u(v1), . . . , u(vn))]

f�(η(v)) = f�([u �→ u(v)])

= [u �→ f(v)(u)]

= f(v)

Differential categories 1067

g�(f�([u �→ α(u(v1), . . . , u(vn))])) = g�([u′ �→ α(f(v1)(u
′), . . . , f(vn)(u

′))])

= g�([u′ �→ α(β1(u
′(v11), . . . , u

′(v1m1
)), . . . ,

βm(u′(vm1), . . . , u
′(vmnm)))])

= [u′′ �→ α(β1(g(v11)(u
′′), . . . , g(v1m1

)(u′′)), . . . ,

βm(g(vm1)(u
′′), . . . , g(vmnm)(u

′′)))]

= [u′′ �→ α(g�([u′ �→ β1(u
′(v11), . . . ,

u′(v1m1
))](u′′)), . . .

g�([u′ �→ βn(u
′(vn1), . . . ,

u′(vnmn
))](u′′))]

= [u′′ �→ α(g�(f(v1))(u
′′), . . . , g�(f(vn))(u

′′))]

= [(fg�)�]([u �→ α(u(v1), . . . , u(vn))]).

The fact that f� is an algebra homomorphism is given by checking the multiplication

and the unit is preserved. The unit is the constant map [u �→ e] and f� applied to any

constant map returns the same constant map (but with a different domain). Thus, the

unit is preserved. For the multiplication we have

f�([u �→ α(u(v1), . . . , u(vn))] · [u �→ β(u(v′
1), . . . , u(v

′
m))])

= f�([u �→ α(u(v1), . . . , u(vn)) · β(u(v′
1), . . . , u(v

′
m))])

= [u′ �→ α(f(v1)(u
′), . . . , f(vn)(u

′)) · β(f(v′
1)(u

′), . . . , f(v′
m)(u′))]

= [u′ �→ α(f(v1)(u
′), . . . , f(vn)(u

′))] · [u′ �→ β(f(v′
1)(u

′), . . . , f(v′
m)(u′))]

= f�([u �→ α(u(v1), . . . , u(vn))]) · f�([u �→ β(u(v′
1), . . . , u(v

′
m))]).

At this point, note that a modality requires only that the (co)multiplication of the

(co)monad is a homomorphism, but when one combines this with naturality one gets that

f� : = S�(f) µ is a homomorphism. Conversely, if each f� is a homomorphism, then (fη)� =

S�(f) is a homomorphism, showing that each free algebra is naturally a (co)algebra. Also,

as the multiplication of the (co)monad is given by (1)�, it must be a homomorphism. In

other words, f� being a homomorphism is equivalent to the (co)multiplication (and unit)

being natural and the (co)multiplication being a homomorphism.

An equivalent way to state the proposition, then, is to say that (S�, ()�, η) is a monad

on ModR for which each free object is naturally a commutative algebra and for which

each f� is an algebra homomorphism.

There are various well-known options for the algebraic theory � over the field of real

(or complex) numbers. For example, a fundamental example is the following.

Corollary 3.4. If � is the ‘pure’ theory of polynomial functions, then S�(V) is the symmetric

algebra monad Sym(V).

Another example suggested above is to take for real vector spaces all the infinitely

differentiable functions C∞(IRn, IR). There are many important subtheories of this: for

example, one can take the subtheory of everywhere convergent power series (or of

everywhere analytic functions).

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1068

Finally, we should connect these examples with our fundamental intuition that linear

maps !A �� B are smooth maps A �� B.

Proposition 3.5. If �: = �oly is the ‘pure’ theory of polynomials:

Lin(IRm, S�(IRn)) ∼= Lin(IRm, Sym(IRn)) ∼= �oly(n, m) .

If �: = �mooth is the smooth theory C∞(IRn, IR),

Lin(IRm, S�(IRn)) ∼= �mooth(n, m) .

Proof (sketch). The basic idea is that this really just reduces to the case m = 1 (in both

cases), for which the result is obvious.

Remember that if the maps seem to be ‘backwards’, we are working in the dual

categories in these examples.

3.2. From differential theory to deriving transformation

In order to ensure there is a deriving transformation, one needs to require that the

algebraic theory � has some further structure. We shall present this structure as the

ability to take partial derivatives. Such a theory will allow us to extend the proof of

Proposition 2.9 to a much more general setting. It is convenient for the development

of these ideas to view the maps in �(n, 1) as terms x1, . . . , xn � t, and this allows us to

suppose that there are ‘partial differential’ combinators:

x1, . . . , xn � t

x1, . . . , xn � ∂xi t
.

We shall frequently just write ∂it for the partial derivative with respect to the ith coordinate.

We then require the following properties of these combinators:

[pd.1] Identity: ∂xx = 1

[pd.2] Constants: ∂xt = 0 when x �∈ t

[pd.3] Addition: ∂x(t1 + t2) = ∂xt1 + ∂xt2
[pd.4] Multiplication: ∂x(t1 · t2) = (∂xt1) · t2 + t1 · (∂xt2)

[pd.5] Substitution: ∂zt[s/x] = (∂xt)[s/x] · ∂zs + (∂zt)[s/x].

A polynomial theory over a rig R with differential combinators is called a differential

theory over R. Almost all the rules should be self-explanatory, except perhaps for [pd.5],

which is a combination of the chain rule and the copying rule natural for terms.

Given a differential theory � over R, we may define an induced co-deriving transform-

ation d: S�(V) �� V ⊗ S�(V) in ModR by

[u �→ α(u(v1), ., u(vn))] �→
n∑

i=1

vi ⊗ [u �→ ∂i(α)(u(v1), . . . , u(vn))] .

(Note the nullary case [u �→ r] �→ 0.) Now it is not immediately clear that this is even well

defined, since, if α(u(v1), ., u(vn)) = β(u(v′
1), ., u(v

′
m)) for all u, we must show that (for all u)

n∑
i=1

vi ⊗ [u �→ ∂i(α)(u(v1), . . . , u(vn))] =

m∑
j=1

v′
j ⊗ [u �→ ∂j(β)(u(v′

1), . . . , u(v
′
m))] .

Differential categories 1069

We shall say V is separated by functionals† if whenever v′ is not dependent on v1, . . . , vn
in an R-module V , then for any functional u there is for each r ∈ R a functional ur such

that u(vi) = ur(vi) but ur(v
′) = r. When we are working enriched over Abelian groups it

is necessary and sufficient to find a functional u0 with u0(vi) = 0 and u0(v
′) = 1. Given

this condition, to obtain the ur for u, one may set ur = r · u0 + u; conversely, one may

set u0 = uu(v′)+1 − u. We shall say ModR is separated by functionals if each V ∈ ModR is

separated by functionals.

This is clearly a rather special property. It implies, in particular, that each finitely

generated algebra has a well-defined dimension that is determined by the cardinality of

the minimal spanning set. This certainly holds for all categories of vector spaces over

fields. Thus, the reader may now essentially start thinking of modules over fields. This

property is also sufficient to ensure the well-definedness of this transformation.

Lemma 3.6. If ModR is separated by functionals and � is a differential theory on R, then

the co-deriving transformation is a well-defined natural transformation.

Proof. We first observe that if [u �→ α(u(v1), . . . , u(vn))], we may assume that the set

{v1, . . . , vn} is independent. For, if v1 =
∑n

j=2 rj · vj , we can adjust α to be

α′(u(v2), . . . , u(vn)) = α

⎛
⎝ n∑

j=2

rj · u(vj), u(v2), . . . , u(vn)

⎞
⎠ .

Note that this adjustment does not change the definition of d since

d([u �→ α(u(v1), ., u(vn))]) =

n∑
i=1

vi ⊗ [u �→ ∂iα(x)[u(v)/x]]

= v1 ⊗ [u �→ ∂1α(x)[u(v)/x]]

+

n∑
i=2

vi ⊗ [u �→ ∂iα(x)[u(v)/x]]

=

n∑
j=2

rj · vj ⊗ [u �→ ∂1α(x)[u(v)/x]]

+

n∑
j=2

vj ⊗ [u �→ ∂jα(x)[u(v)/x]]

=

n∑
j=2

vj ⊗ ([u �→ (∂1α(x)rj

+∂jα(x)[
∑

rjxj/x1])[u(vj)/xj]

=

n∑
j=2

vj ⊗ [u �→ ∂jα
′(x)[u(vj)/xj]] .

Thus we may assume that in both α and β the elements v1, . . . , vn and v′
1, . . . , v

′
m are

independent, as otherwise we can do a replacement. Furthermore, by the same reasoning,

† By ‘functionals’ we mean ‘linear functionals’.

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1070

we may replace the arguments of β by an expression in v1, . . . , vn whenever they are

dependent on these elements. This gives a minimal independent set, which may have some

extra points not in v1, . . . , vn. However, using the separation property, we now know that

β cannot depend on these points! Thus, β can be completely expressed in term of the

points v1, . . . , vn, and this shows that the map is well defined.

We also need to show that dV is a map of R-modules. However, this is immediate from

the properties of the partial derivatives. Finally, we need to establish naturality. For this

we have

d(S�(f)([u �→ α(u(v1), . . . , u(vn))])) = d([u �→ α(u(f(v1)), . . . , u(f(vn)))])

=

n∑
i=1

f(vi) ⊗ [u �→ ∂iα(u(f(v1)), . . . , u(f(vn)))]

= [f ⊗ S�(f)]

n∑
i=1

vi ⊗ [u �→ ∂iα(u(v1), . . . , u(vn))]

= [f ⊗ S�(f)](d([u �→ α(u(v1), . . . , u(vn))])) .

Proposition 3.7. If � is a differential theory over R, and ModR is separated by functionals,

then Modop
R becomes a differential category with respect to the algebra modality (S�, ()�, η)

on ModR and the induced co-deriving transformation.

Proof. It just remains to establish the properties of a differential combinator. The

argument is the same as that used in Proposition 2.9, where we implicitly used familiar

properties of partial derivatives. Here we do an explicit calculation to mimic that

calculation based on the axiomatic structure of a differential theory. The point, of course,

is that the S∞ construction provides the formal support required to make this argument.

One should think of S�(Rn) as smooth real-valued functions. The various contortions in

the definition occur for two reasons. First, one has to make this covariant; and second,

it has to be defined on infinite-dimensional spaces. Once that is sorted out, the simpler

proof goes through verbatim. In retrospect, the point of introducing polynomial theories

and differential theories is to present a general abstract framework in which the proof

can be carried out.

[d.1] For scalars we have d(e(r)) = d([u �→ r]) = 0.

[d.2] The copying rule gives

[d∆]([u �→ α(u(v1), . . . , u(vn))], [u �→ β(u(v′
1), . . . , u(v

′
m))])

= d([u �→ α(u(v1), . . . , u(vn)) · β(u(v′
1), . . . , u(v

′
m))]))

=

n∑
i=1

vi ⊗ [u �→ ∂u(vi)α(u(v1), . . . , u(vn)) · β(u(v′
1), . . . , u(v

′
m))]

+

m∑
j=1

v′
j ⊗ [u �→ α(u(v1), . . . , u(vn)) · ∂u(v′

j)
α(u(v′

1), . . . , u(v
′
m))]

= [1 ⊗ ∆(d ⊗ 1) + (1 ⊗ ∆)(1 ⊗ c ⊗ 1)(1 ⊗ d)]

([u �→ α(u(v1), . . . , u(vn))], [u �→ β(u(v′
1), . . . , u(v

′
m))]) .

Differential categories 1071

[d.3] Linearity is d(η(x)) = d([u �→ u(x)]) = x ⊗ 1.
[d.4] Chaining requires the following calculation:

d(1�([u �→ α(u([v �→ β1(v(x11), . . . , v(x1m1
))]), . . . , u([v �→ βn(v(xn1), . . . , v(xnmn))]))]))

= d([v �→ α(β1(v(x11), . . . , v(x1m1
)), . . . , βn(v(xn1), . . . , v(xnmn))])

=

n∑
i=1

mi∑
j=1

xij ⊗ [v �→ ∂ijα(β1(v(x11), . . . , v(x1m1
)), . . . , βn(v(xn1), . . . , v(xnmn))]

=

n∑
i=1

mi∑
j=1

xij ⊗ [v �→ ∂j(βi)(v(xi1), . . . , v(ximi
))

· ∂i(α)(β1(v(x11), . . . , v(x1m1
)), . . . , βn(v(xn1), . . . , v(xnmn)))]

= (1 ⊗ ∆)(

n∑
i=1

mi∑
j=1

xij ⊗ [v �→ ∂j(βi)(v(xi1), . . . , v(ximi
))]

⊗ [u �→ ∂i(α)(β1(u(x11), . . . , u(x1m1
)), . . . , βn(u(xn1), . . . , u(xnmn)))])

= (1 ⊗ ∆)((d ⊗ 1�)(

n∑
i=1

[v �→ β1(v(x11), . . . , v(x1m1
))]

⊗ [u �→ ∂i(α)(u([v �→ β1(v(x11), . . . , v(x1m1
))]), . . .

. . . , u([v �→ βn(v(xn1), . . . , v(xnmn))]))])))

= (1 ⊗ ∆)((d ⊗ 1�)(d([u �→ α(u([v �→ β1(v(x11), . . . , v(x1m1
))]),

. . . , u([v �→ βn(v(xn1), . . . , v(xnmn))]))]))) .

At this stage we have shown how to incorporate notions of differentiability into a

category of vector spaces. Applying these results to other settings does require that one

can prove that all objects are separable by functionals. There is a further subtle aspect to

these settings that must be remembered: the finite-dimensional support of the elements

of S�(V) builds in a certain finite dimensionality to the notion of differentiability.

4. Differential storage categories

A storage modality on a symmetric monoidal category is a comonad that is symmetric

monoidal and has each cofree object symmetrical monoidally naturally a commutative

comonoid so that the comultiplication and elimination map are also morphisms of the

coalgebras of the comonad. When the category also has products, these rather technical

conditions give what we shall call a storage category. In this case the category has the

storage (or Seely) isomorphisms, and it is this fact that we wish to exploit below. The

storage isomorphisms are natural isomorphisms s×: !A ⊗ !B �� ! (A × B) that also,

importantly, hold in the nullary case s1: � �� ! 1.

Regarding terminology, storage categories are exactly the same as Bierman’s notion

of a ‘linear category’ (Bierman 1995). We have chosen not to follow his terminology

here as the notion of a linear map (in the context of maps between vector spaces) has

a different connotation in the theory of differentiation. This paper involves a number

of modalities and we have chosen nomenclature that corresponds to the appropriate

modality involved: a ‘storage category’ has a storage modality. These have appeared

frequently in the literature, especially when the category is closed, and often with different

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1072

names. We called them ‘bang’s in (Blute et al. 1996). Recently, they have been called

‘linear exponential monads’ in Hyland and Schalk (2003).

4.1. Basics for storage categories

Definition 4.1. A storage modality on a symmetric monoidal category is a comonad

(! , δ, ε) that is symmetric monoidal and has each cofree object naturally a commutative

comonoid (!A,∆, e). In addition, the comonoid structure must be a morphism for the

coalgebras for the comonad.

Recall that a coalgebra (A, ν) for the comonad is an object together with a map ν:A
�� !A such that νε = 1 and νδ = ν ! ν. This means that given coalgebras (A, ν) and

(A′, ν ′), the tensor product of these is formed as (A ⊗ A′, (ν ⊗ ν ′)m⊗). For any symmetric

monoidal comonad this makes the (Eilenberg–Moore) category of coalgebras a symmetric

monoidal category.

We first recall the following proposition (see Schalk (2004)).

Proposition 4.2. A symmetric monoidal category has a storage modality if and only if the

induced symmetric tensor on the category of coalgebras for the comonad is a product.

In particular, this means that we have coalgebra morphisms ∆: (!A, δ) �� (!A ⊗
!A, (δ ⊗ δ)m⊗) that must be an associative multiplication with counit e: (!A, δ) ��

(�, m�). These give rise to the rather technical requirements above.

This is a useful result, as the symmetric algebra monad on ModR is always symmetric

comonoidal and has the induced tensor a coproduct on its algebras. Therefore we have

the following corollary.

Corollary 4.3. For any commutative rig R, the opposite of its category of modules, Modop
R ,

has a storage modality given by the symmetric algebra monad on ModR .

A primary example of this (in addition to the ever-present symmetric algebra functor

on vector spaces) is the storage modality on suplattices described earlier. The duality twist

required to get this example is explained by this observation.

Definition 4.4. A storage category is a symmetric monoidal category possessing products

and a storage modality.

When products are present a crucial observation is given by the following proposition

from Bierman (1995).

Proposition 4.5. A storage category possesses the storage isomorphisms

s×: !A ⊗ !B �� ! (A × B) s1: � �� ! 1

Differential categories 1073

and, furthermore,

!X
! (∆×)

�����������
∆

		����������

!X ⊗ !X s×
�� ! (X × X)

!X
e

����
��

��
�� ! (〈〉)

��
��

��
��

� s1
�� ! 1

,

commute.

The storage isomorphisms are not arbitrary maps; they are given in a canonical way

by the structure of the setting.

s× = !X ⊗ !X
δ⊗δ �� !!X ⊗ !!X

m⊗ �� ! (!X ⊗ !X)
! (〈ε⊗e,e⊗ε〉) �� ! (X × X)

s1 = � m� �� ! �
! (〈〉) �� ! 1

where the inverses are

s−1
× = ! (X × X)

∆ �� ! (X × X) ⊗ ! (X × X)
!π0⊗ !π1 �� !X ⊗ !X

s−1
1 = ! 1

e �� � .

The Kleisli category of a storage modality is the subcategory of cofree coalgebras in

the Eilenberg–Moore category. From Proposition 4.2 we know that the Eilenberg–Moore

category has products given by the tensor. In general, the tensor of two cofree objects is

not itself a cofree object, but the storage isomorphism ensures it is equivalent to a cofree

object. This gives the following corollary.

Corollary 4.6. The coKleisli category �! of the modality of a storage category �, viewed

as a subcategory of the Eilenberg–Moore category, is closed under the induced tensor of

the latter. Moreover, if � has products, they give products in �! as well.

We can also record the following observation.

Proposition 4.7. For any storage category � the adjunction between � and the coKleisli

category �! is a monoidal adjunction.

The monoidal structure of �! is the product. Recall that in a monoidal adjunction

the left adjoint is necessarily iso-monoidal (that is, strong). In this case the left adjoint

is the underlying category and the iso-monoidal transformation is given by the storage

isomorphism. The monoidal map for the right adjoint amounts to a coKleisli map X ×
Y

m �� X ⊗ Y , which in � is the composite map

! (X × Y)
s−1

�� ! (X) ⊗ ! (Y)
ε⊗ε �� X ⊗ Y .

4.2. Bialgebra modalities

Our next step toward considering differential categories with storage is to consider the

effect of requiring a storage category to be additive. It is well known that in any additive

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1074

category if there are either products or coproducts, they must coincide and be biproducts.

One way to describe biproducts is as a natural commutative bialgebra structure on a

symmetric tensor.

Recall (for example, from Kassel (1995)) that an object A in a symmetric monoidal

category is a (commutative) bialgebra when it has both a (cocommutative) comonoid

(A,∆, e) and a (commutative) monoid (A,∇, ι) structure such that all the triangles and the

pentagon in

A ⊗ A
e⊗e ��

∇

��

��
��

��
� �

A

e

��							

A
e �� �

�

ι

��

�������

�������

A
∆ �� A ⊗ A

�

ι

��

 ι⊗ι

��������

A ⊗ A

∆⊗∆

��

∇ �� A

∆

��
A⊗4

1⊗c⊗⊗1 ��

 A ⊗ A

A⊗4

∇⊗∇

�����������

commute.

Definition 4.8. A bialgebra modality is a comonad (! , δ, ε) such that each !A is in

fact naturally a bialgebra, (!A,∇, ι,∆, e), such that δ is a homomorphism of coalgebra

structures (but not necessarily of the algebra structures), and such that ε satisfies the

following equations ιε = 0 and ∇ε = ε ⊗ e + e ⊗ ε.

The following proposition is immediate.

Proposition 4.9. In any additive storage category, each cofree object is naturally a

commutative bialgebra where the canonical bialgebra structure on the biproduct is given

by transporting the bialgebra structure onto the tensor using the storage isomorphism.

Furthermore, the storage modality is in fact a bialgebra modality.

Proof (sketch). As stated, ∇: !A ⊗ !A �� !A and ι: � �� !A are defined by the

following commutative diagrams (note that + is × and 0 is 1):

!X ⊗ !X

∇ ������������
s× �� ! (X + X)

!(∇+)		���������

!X

�

ι
����

��
��

��
s1 �� ! 0

!0����
��

��
��

!X

Differential categories 1075

To see the ε equations, note that they essentially lift from the biproduct structure via

the storage isomorphisms:

! 0

ε

��

!0 �� !A

ε

��
0 ι

�� A

!A ⊗ !A
〈1⊗e,e⊗1〉

�������������

s× ��

∇

���������������������� ! (A + A)

ε

		����������
!(∇+)

��
!A + !A

ε+ε ��

∇+

��

A + A

∇+

��

!A

ε

		�����������

!A ε
�� A

And note that ∇+ = π1 + π2, so ε(π1 + π2) = επ1 + επ2 = ! π1ε + ! π2ε, so we get

∇ε = ε ⊗ e + e ⊗ ε.

4.3. Differential storage categories and the differential calculus

If an additive storage category has a differential combinator, it is natural to expect it to

interact with the multiplication ∇: !A ⊗ !A �� !A in a well-defined manner.

[∇–rule] (d ⊗ 1)∇ = (1 ⊗ ∇)d:

A ⊗ !A ⊗ !A

dA⊗1

��

1⊗∇ �� A ⊗ !A

dA

��
!A ⊗ !A ∇

�� !A

∇

∇
!A

!A

A !A

!A !A

!A

!A

!A

A

�
�
��

�
�
��

�
�
�

�
�
�

=

Definition 4.10. A differential storage category is an additive storage category with a

deriving transformation such that the ∇-rule is satisfied.

We observe that in this setting, whenever we have a deriving transformation, we obtain

a natural transformation

η:A �� !A = A
1⊗ι �� A ⊗ !A

dA �� !A .

Thomas Ehrhard and Laurent Regnier have introduced a syntax they refer to as

‘differential interaction nets’ (Ehrhard and Regnier 2005). Their formalism makes explicit

the fact that !X has a bialgebra structure and presents differentiation as a map X −◦ !X,

indeed, as the η map above. They also have rewriting rules similar to the equations on

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1076

circuits presented here, apart from those involving ‘promotion’, which their system did

not include. That additional structure on ! had been considered in Ehrhard (2001).

However, their formalism demands the presence of considerably more structure, which

includes the requirement of being monoidal closed (actually ∗-autonomous). Our basic

example of polynomial functions is not even closed. To make a comparison of the two

approaches easier, we shall now reformulate the ideas of Ehrhard and Regnier into a

first-order setting; we shall call the resulting notion a ‘categorical model of the differential

calculus’.

Definition 4.11. A categorical model of the differential calculus is an additive category

with biproducts with a bialgebra modality consisting of a comonad (! , δ, ε) such that

each object !X has a natural bialgebra structure (!X,∇X, ιX,∆X, eX), and a natural map

ηX:X �� !X satisfying the following coherences:

[dC.1] ηe = 0

[dC.2] η∆ = η ⊗ ι + ι ⊗ η

[dC.3] ηε = 1

[dC.4] (η ⊗ 1)∇δ = (η ⊗ ∆)((∇η) ⊗ δ)∇.

We may present these as circuit equations by:

[dC.1]

η

e

=!A

�

0

A

[dC.2]

∆

η ηη

=!A

!A !A
!A!A

A AA

!A!A

�
�
��

�
�
��

+ι ι

[dC.3]

η

ε

!A

A

AA

=

Differential categories 1077

[dC.4]

η η

∇ ∇ δ

∇

δ η

!A !A !A !A

!A !A

!!A

!!A
!!A

!!A

A A!A !A

=

�
�

�
�∆

An additive storage category could provide a variety of models for the differential

calculus: each corresponds to specifying a deriving transformation satisfying the ∇-rule.

We first observe a more general result: that a model of the differential calculus always

gives rise to deriving transformation (whether it is on a storage modality or not).

Theorem 4.12. A model of the differential calculus is equivalent to a differential category

with biproducts whose coalgebra modality is a bialgebra modality satisfying the ∇-rule.

Corollary 4.13. Models of the differential calculus on additive storage categories corres-

pond precisely to differential storage categories, that is, to deriving transformations on

these categories satisfying the ∇-rule.

Proof of Theorem 4.12. Given a model of the differential calculus, we obtain a differ-

ential category by defining dX by dX = (ηX ⊗ 1)∇. There are four equations to verify:

[d.1] The rule for constant maps is verified by

dAeA = (η ⊗ 1)∇e = (η ⊗ 1)(e ⊗ e) = (0 ⊗ e) = 0 .

As a circuit calculation this is

∇ η

η

= =!A !A !A

!A

B
B B

A
!A A

A

!A
!A

�
��

�
���

��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

���� ���� ����

�����
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

e e e

e�
�
�
�
��

= 0

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1078

[d.2] The product rule for the deriving transformation is given by

dA∆ = (η ⊗ 1)∇∆

= (η ⊗ 1)(∆ ⊗ ∆)(1 ⊗ c⊗ ⊗ 1)(∇ ⊗ ∇)

= ((η ⊗ ι) + (ι ⊗ η)) ⊗ ∆)(1 ⊗ c⊗ ⊗ 1)(∇ ⊗ ∇)

= (η ⊗ ι ⊗ ∆)(1 ⊗ c⊗ ⊗ 1)(∇ ⊗ ∇) + (ι ⊗ η ⊗ ∆)(1 ⊗ c⊗ ⊗ 1)(∇ ⊗ ∇)

= (η ⊗ ∆)(1 ⊗ 1 ⊗ ι ⊗ 1)(∇ ⊗ ∇) + (η ⊗ ∆)(ι ⊗ c⊗ ⊗ 1)(∇ ⊗ ∇)

= (η ⊗ ∆)(∇ ⊗ 1) + (1 ⊗ ∆)(c⊗ ⊗ 1)(1 ⊗ ((η ⊗ 1)∇))

= (1 ⊗ ∆)(dA ⊗ 1) + (∆ ⊗ 1)(c⊗ ⊗ 1)(1 ⊗ dA).

In circuits this is

∇

∇ ∇

η η

= =!A
!A

!A !A

A

A A

!A
!A !A

!A !A

!A

!A
!A !A

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
�

�
� �

�
�
�

�
�

�
�

�
�

�
�

∆
∆

∆ ∆

��

∇∇ ∇∇

ιη
ηι

=
+

!A!A

!A
!A

AA

!A!A !A!A

�
�

�
�

�
�

�
� ∆∆

∇ ∇

η
η

= +
!A

!A!A AA

!A !A!A!A

�
�

�
��

�
�
�

∆

∆

��

∆∆

=

A A

!A
!A

!A
!A

!A!A�
�
�
�� +�

�
�
��

Differential categories 1079

[d.3] Linearity is given by the following calculation:

dAεA = (η ⊗ 1)∇ε
= (η ⊗ 1)(e ⊗ ε + ε ⊗ e)

= (η ⊗ 1)(e ⊗ ε) + (η ⊗ 1)(ε ⊗ e)

= (0 ⊗ ε) + ((ηε) ⊗ e)

= 1 ⊗ e.

Using circuits this is

∇

η η

η

ε
ε ε ε

= =
!A

!A

!A

A
A A A

A

A A A

!A

!A !A !A

�
��

�
��

�
�

�
�
�
�
�

��������
+

�
�

�
�

�
�

�
�e e

η

ε

= =

A

A

A

!A

!A

����

�
�

�
�e

����

+
�
�

�
�e0

[d.4] Chaining is immediate from [dC.4].

The associativity of ∇ provides the ∇-rule for the deriving transformation.

To prove the converse, we need to show that given a differential category with a

bialgebra modality satisfying the ∇-rule, we can define η as (1 ⊗ ι) dA to give us a

model of the differential calculus. Again, there are four equations to verify. These are

straightforward; we shall present the proofs for the two cases that are not entirely trivial

via circuit calculations.

[dC.1] This is obvious, since de = 0.

[dC.2]

∆

=!A

A

A A

!A !A

!A !A!A !A

�
�
��

�
�
��

�
�
��

�
�
��

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ι

ι ιι ι�
�� �

��
�
��+

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1080

=

A A

!A !A
!A !A

�
�
��

�
�
��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
ι ιι ι

�
��

�
��+

[dC.3] This is obvious, since ιe = 1.

[dC.4] We reduce each side of the equation to the same circuit (in fact, the circuit

corresponding to D(δ)); note the use of the ∇-rule (several times):

δ

δ
∇

δ

=== !A
!A

A
A

A

!!A

!A

!!A

!!A

!A

!A

!A !!A

!A

�
�
��

�
�
��

�
�
�

�

�

�

�∆�
�

LHS

ι

∇ ∇

∇

∇

δ

δ

==

!A

A A

!!A
!!A

!A !A

!A

!A

!!A

!!A

�
�
��

�

�

�

�

�

�

�

�
∆ ∆�

�

�
�

RHS

�
��

�
��

ι

ι

ι

ι

δ=

A

!!A

!A !!A

!A

�

�

�

�∆

Differential categories 1081

Finally, the deriving transformation induced by the differential calculus produced from

such a deriving transformation is just the original deriving transformation. Conversely, the

η induced by the deriving transformation must reduce to η when the deriving transforma-

tion was induced by the differential calculus. For this we have the following calculations:

(η ⊗ 1)∇ = (((1 ⊗ ι)d) ⊗ 1)∇
= (1 ⊗ ι ⊗ 1)(1 ⊗ ∇)d

= d

(1 ⊗ ι)d = (1 ⊗ ι)(η ⊗ 1)∇
= (η ⊗ ι)∇
= η.

5. Concluding remarks

One of the goals of this work has been to establish a categorical framework for

differentiable structures following the approach suggested by Ehrhard. While his approach

to this matter has been our basic inspiration, these matters have in fact been the subject of

research for quite some time. Without trying to be historically complete, we should mention

the early work on the subject by Charles Ehresmann, in particular, Ehresmann (1959). This

and other related papers are collected in Ehresmann (1980–1983). Ehresmann considered

several categories of smooth structures, and stressed the importance of internal categories

therein. He also considered extensions to the category of manifolds, which would have

more limits and colimits.

We are currently working on a sequel to this paper whose aim is to give an abstract

characterisation of those categories that arise as coKleisli categories of differential

categories (Blute et al. 2006). Using these ideas, we believe it is possible to reproduce

Ehresmann’s context from ours, and we intend this to be the subject of a further sequel

to this work.

Various approaches to building cartesian closed categories of smooth structures have

also been suggested, and it would also be interesting to know to what extent these

constructions are applicable to our general notion of differentiation. In particular, both

the convenient vector spaces of Frolicher and Krieg (1988) and the diffeological spaces

of Iglesias-Zemmour (2006), whose references give further historical information, seem

worth investigating in this regard.

There is also a considerable body of work concerning the development of differential

structures in monoidal categories, especially braided monoidal categories, in particular

Woronowicz (1989), Majid (1993) and Bespalov (1997)†. A basic goal of this work is

to develop an abstract version of de Rham cohomology by finding differential graded

algebras in these categories. It would be interesting to understand how this work is related

to the work presented in the current paper.

† A search of the archives at xxx.lanl.gov will turn up many other references.

R. F. Blute, J. R. B. Cockett and R. A. G. Seely 1082

Acknowledgements

All three authors wish to acknowledge NSERC Canada for the support we receive for

our research.

We also wish to thank the University of Ottawa (for the support the second author

received while on sabbatical there) and PIMS and John MacDonald (for the support we

all received when finishing the paper at UBC).

We thank the anonymous referees for their detailed reports, which contained many

helpful comments and suggestions.

References

Barr, M. B. (1979) ∗-Autonomous Categories. Springer-Verlag Lecture Notes in Mathematics 752.

Bespalov, Y. and Drabant, B. (1997) Differential Calculus in Braided Abelian Categories. (Preprint,

available at http://arxiv.org/abs/q-alg/9703036.)

Bierman, G. (1995) What is a categorical model of intuitionistic linear logic? In: Proceedings of

the Second International Conference on Typed Lambda Calculus and Applications, Edinburgh,

Scotland. Springer-Verlag Lecture Notes in Computer Science 902 73–93.

Blute, R. F., Cockett, J. R. B. and Seely, R.A.G. (1996) ! and ? : Storage as tensorial strength.

Mathematical Structures in Computer Science 6 313–351.

Blute, R. F., Cockett, J. R. B. and Seely, R.A.G. (2006) Cartesian differential categories (in

preparation).

Blute, R. F., Cockett, J. R. B., Seely, R.A.G. and Trimble, T. (1997) Natural deduction and coherence

for weakly distributive categories. Journal of Pure and Applied Algebra 113 229–296.

Cockett, J. R. B. (1993) Introduction to distributive categories. Mathematical Structures in Computer

Science 3 277–308.

Ehresmann, C. (1959) Catégories topologiques et catégories différentiables. In: Coll. Géom. Diff.

Globale (Bruxelles, 1958), Centre Belge Rech. Math. Louvain 137–150.

Ehresmann, C. (1980–1983) Charles Ehresmann: Oeuvres complètes et commentées. Edited by

A.C. Ehresmann and published as supplements to Cahiers de Topologie et Géométrie Différentielle,

Amien 21–24.

Ehrhard, T. (2001) On Köthe sequence spaces and linear logic. Mathematical Structures in Computer

Science 12 579–623.

Ehrhard, T. (2005) Finiteness spaces. Mathematical Structures in Computer Science 15 615–646.

Ehrhard, T. and Regnier, L. (2003) The differential λ-calculus. Theoretical Computer Science 309

(1–3) 1–41.

Ehrhard, T. and Regnier, L. (2005) Differential interaction nets. Invited paper for Workshop

on Logic, Language, Information and Computation (WoLLIC). Electronic Notes in Theoretical

Computer Science 123.

Frolicher, A. and Kriegl, A. (1988) Linear Spaces and Differentiation Theory, Wiley Publishing.

Girard, J.-Y. (1987) Linear Logic. Theoretical Computer Science 50 1–102.

Hyland, M. and Schalk, A. (2003) Glueing and Orthogonality for Models of Linear Logic. Theoretical

Computer Science 294 183–231.

Iglesias-Zemmour, P. (2006) Introduction to Diffeology. (Online textbook available at http://

www.umpa.ens-lyon.fr/∼iglesias.)

Kassel, C. (1995) Quantum Groups, Graduate Texts in Mathematics 155, Springer-Verlag.

Lang, S. (2002) Algebra, Graduate Texts in Mathematics, Springer-Verlag.

Differential categories 1083

Mac Lane, S. (1971) Categories for the Working Mathematician, Graduate Texts in Mathematics,

Springer-Verlag.

Majid, S. (1993) Free Braided Differential Calculus, Braided Binomial Theorem and the Braided

Exponential Map. Journal of Mathematical Physics 34 4843–4856.

Manes, E.G. (1976) Algebraic Theories, Graduate Texts in Mathematics 26, Springer Verlag.

Schalk, A. (2004) What is a categorical model of linear logic? (Course notes.)

Seely, R.A.G. (1989) Linear logic, ∗-autonomous categories and cofree coalgebras. In: Gray, J. and

Scedrov, A. (eds.) Categories in Computer Science and Logic. Contemporary Mathematics 92.

Woronowicz, S. L. (1989) Differential calculus on compact matrix pseudogroups (quantum groups).

Comm. Math. Phys. 122 125–170.

