
Differential Categories Revisited

R.F. Blute J.R.B. Cockett J-S. P. Lemay R.A.G. Seely

June 9, 2018

1 Introduction

Differential linear logic [8, 9] introduced a syntactic proof-theoretic approach to differential calculus
and, subsequently, differential categories [3] were developed to provide a categorical counterpart
for these ideas. In this categorical approach two methods for defining the differentiation were
introduced based on, respectively, a deriving transformation and a codereliction. In [10] Fiore
proposed an axiomatization for a deriving transformation, which he called a “creation operator”,
satisfying additional “strength laws”. These laws were very natural to impose in the presence of
a monoidal coalgebra modality and biproducts. However, this introduced an apparently stronger
notion of differentiation and left open the question of whether a creation operator was a distinct
notion of differentiation. An initial purpose of this paper is to provide a proof that, in the presence
of a monoidal coalgebra modality, all these methods of defining differentiation are in fact, equivalent.
Thus, there is only one notion of differentiation in linear logic.

In [10], Fiore made another interesting observation, namely, that it is much more convenient
to work in a setting with biproducts. Furthermore he argued that, as one can always complete an
additive category to have biproducts, one may as well work in a setting with biproducts. Of course,
the notion of differentiation in additive categories is tightly coupled to having a coalgebra modality.
Thus, when one completes a differential category to have biproducts, one needs to show that this
modality can also be extended to the biproduct completion. It is standard that one can extend a
monoidal coalgebra modality to the biproduct completion using the Seely isomorphisms and Fiore’s
work was focused on this case. However, when the modality is not monoidal, there is no reason
why the modality should extend to the biproduct completion. In fact, the deriving transformations
of [3] had not assumed that the coalgebra modality was monoidal. Thus, if one is to entertain
these more basic modalities, one must be cautious about assuming the presence of biproducts. A
significant aspect of this paper is to point out that there are many natural examples of differential
categories in which the coalgebra modality is not monoidal, thus exclusively concentrating on
monoidal modalities misses an important part of the geography of differentiation (see the Venn
diagram in Section 8) .

The paper starts by revisiting the “original” definition of a differential category found in [3].
This relies on the idea of a coalgebra modality and a deriving transformation. Familiarity with
linear logic may tempt one to think that this is the “exponential” modality of linear logic but it
is not. It is a strictly more general notion as the modality is not assumed monoidal. There are
many familiar and important examples of differential categories based on a monoidal coalgebra
modality – such as (the opposite of) the free symmetric algebra monad on vector spaces. However,
examples of differential categories based on a modality which is not monoidal are less familiar. Two

1

compelling examples are smooth functions via the free C∞-ring over vector spaces (as mentioned in
[3]) and the free Rota-Baxter algebra over modules (see [19]) which we prove, in Proposition 8.8.
provides a differential category.

Here we refer to additive categories, with a monoidal coalgebra modality, as “additive linear
categories”: their biproduct completion is then an “additive monoidal storage category” [5]. An
additive monoidal storage category (which has biproducts) is always an additive linear category
(which need not have biproducts) and both always have a monoidal bialgebra modality. Here,
to facilitate the proofs, it is convenient to work with a further intermediate notion we called an
“additive bialgebra modality”: this is a bialgebra modality which has an additional coherence
requirement between the addititive and bialgebra structure. It is with respect to additive bialgebra
modalities that we prove that deriving transformations and coderelictions are equivalent.

Coderelictions always give deriving transformations, and it was shown, in [3], that a deriving
transformation, for a bialgebra modality, is equivalent to a codereliction if and only if the deriving
transformation satisfies the ∇-rule. This latter rule was originally thought to be a completely
independent requirement. The key new observation is that, for an additive bialgebra modality
with a deriving transformation, the ∇-rule is, in fact, implied. More specifically, while a deriving
transformation is assumed to satisfy five rules – see [d.1]–[d.5] below (which include the linear
rule and the Leibnitz rule) – over an additive bialgebra modality, we prove that for a deriving
transformation which satisfies the linear rule, the ∇-rule is equivalent to the Leibniz rule.

When an additive symmetric monoidal category has a monoidal coalgebra modality it is straight-
forward to show that the modality is an additive bialgebra modality. Thus, for additive linear
categories deriving transformations and coderelictions are equivalent.

Clearly additive bialgebra modalities and monoidal coalgebra modalities are closely related.
In particular, additive bialgebra modalities can always be extended to the biproduct completion
(see Section 7) and, furthermore, this biproduct completion has Seely isomorphisms [17]. Thus,
additive bialgebra modalities correspond to monoidal storage categories [5] (also called new Seely
categories [1, 16]) having the Seely isomorphisms. However, it is well-known (as the name suggests)
that monoidal storage categories have a monoidal coalgebra modality! Thus, additive bialgebra
modalities are, in fact, monoidal coalgebra modalities.

The above provides an abstract proof of the equivalence of the two notions which relies on
results dispersed across a number of papers. In order to bring the result into focus for this paper
we provide a direct proof (see Appendices A and B). We make no claim that the resulting proof
is more elegant or shorter: it simply has the merit of collecting a complete demonstration of this
equivalence under one roof.

This allow us to complete the first purpose of the paper by observing that, in an additive linear
category, coderelictions and deriving transformations always satisfy the “strength laws”. Putting
all this together one has that deriving transformations and creation operators are, in additive linear
categories, completely equivalent.

The final section of the paper, Section 8, provides separating examples for the categorical struc-
tures we have introduced. Of particular interest is the example of the modality on differential
algebras which we treat in some detail. It is of particular interest as – contrary perhaps to expec-
tations – it is an example (in the dual) of an additive coalgebra modality which does not admit a
deriving transformation. Furthermore, it does not admit a deriving transformation in the strongest
possible sense: assuming that there is a deriving transformation forces the differential ring to be
trivial. As far as we know these observations are new. Another interesting example is the Rota-

2

Baxter modality on a module category: as mentioned above, it is an example of a modality which
is not additive yet admits a deriving transformation. Again as far as we know this has not been
presented in full detail before.

1.1 Conventions and the Graphical Calculus

We shall use diagrammatic order for composition: explicitly, this means that the composite map
fg is the map which first does f then g. Furthermore, to simplify working in symmetric monoidal
categories, we will allow ourselves to work in strict symmetric monoidal categories and so will
generally suppress the associator and unitor isomorphisms. For a symmetric monoidal category
we will use ⊗ for the tensor product, K for the unit, and σ : A ⊗ B −→ B ⊗ A for the symmetry
isomorphism.

We shall make extensive use of the graphical calculus [13] for symmetric monoidal categories as
this makes proofs easier to follow. Note, however, that our diagrams are to be read down the page
– from top to bottom – and we shall often omit labelling wires with objects. We refer the reader
to [18] for an introduction to the graphical calculus in monoidal categories and its variations, and
to [3] for the graphical calculus of a differential category.

We will be working with coalgebra modalities: these are based on a comonad (!, δ, ε) where ! is
the functor, δ is the comultiplicaton and ε is the counit. As in [3], we will use functor boxes when
dealing with string diagrams involving the functor !: a mere map f : A −→ B will be encased in a
circle while !(f) : !A −→ !B will be encased in a box:

f =

A

B

f !(f) =

!A

!B

f

2 Differential Categories

Tensor differential categories are structures over additive symmetric monoidal categories with a
coalgebra modality. We begin by recalling the components of this structure starting with the
notion of an additive category. Here we mean “additive” in the sense of being commutative monoid
enriched: we do not assume negatives nor do we assume biproducts (this differs from the usage in
[15] for example). This allows many important examples such as the category of sets and relations
or the category of modules for a commutative rig1.

Definition 2.1 An additive category is a commutative monoid enriched category, that is, a
category in which each hom-set is a commutative monoid with an addition operation + and a zero
0, and such that composition preserves the additive structure, that is: k(f+g)h= kfh+kgh, 0f = 0
and f0 = 0. An additive symmetric monoidal category is a symmetric monoidal category
which is also an additive category in which the tensor product is compatible with the additive
structure in the sense that k ⊗ (f+g)⊗ h=k ⊗f ⊗ h+k ⊗g ⊗ h, 0⊗ h=0, and h⊗ 0=0.

1Rigs are also known as a semirings: they are rings without negatives.

3

In a symmetric monoidal category, a cocommutative comonoid is a triple (C,∆, e) consisting of
an object C, a map ∆ : C −→ C ⊗ C called the comultiplication and a map e : C −→ K called the
counit such that the following diagrams commute:

C
∆ //

∆
��

C ⊗ C
∆⊗1
��

C

∆
��

C
∆ //

∆ ##

C ⊗ C
σ

��
C ⊗ C

1⊗∆
// C ⊗ C ⊗ C C C ⊗ C

e⊗1
oo

1⊗e
// C C ⊗ C

A morphism of comonoids f : (C,∆, e) −→ (D,∆′, e′) is a map f : C −→ D which preserves the
comultiplication and counit, that is, the following diagrams commute:

C
∆ //

f

��

C ⊗ C
f⊗f
��

C
f //

e
��

D

e′

��
D

∆′
// D ⊗D K

Definition 2.2 A coalgebra modality [3] on a symmetric monoidal category is a quintuple
(!, δ, ε,∆, e) consisting of a comonad (!, δ, ε), a natural transformation ∆A : !A −→ !A ⊗ !A, and a
natural transformation eA : !A −→ K such that for each object A, (!A,∆A, eA) is a cocommutative
comonoid and δ preserves the comultiplication, that is, δ∆ = ∆(δ ⊗ δ).

Note that we do not assume that the functor ! of a coalgebra modality is a monoidal functor
– this will come later. The coKleisli maps for the comonad are important: these maps are of the
form f : !A −→ B; amongst these are the linear maps εg : !A −→ B where g : A −→ B.

Requiring that ∆ and e be natural transformations is equivalent to asking that for each map
f : A −→ B, !(f) : !A −→ !B is a comonoid morphism. This can be used to show that δ is a comonoid
morphism.

Lemma 2.3 For any coalgebra modality (!, δ, ε,∆, e), δ also preserves the counit, that is, δe = e,
and so δ is a comonoid morphism.

Proof: By the naturality of e and that (!, δ, ε) is a comonad, we obtain that:

δe = δ!(ε)e = e

2

Definition 2.4 A differential category is an additive symmetric monoidal category with a coal-
gebra modality (!, δ, ε,∆, e) which comes equipped with a deriving transformation [3], that is,
a natural transformation dA : !A⊗A −→ !A, which is represented in the graphical calculus as:

d :=

A

!A

====

!A

such that d satisfies the following equations:

4

[d.1] Constant Rule: de = 0

e

====
= 0

[d.2] Leibniz Rule:

d∆ = (∆⊗1)(1⊗σ)(d⊗1)+(∆⊗1)(1⊗d)

====

∆
=

====

∆

+
====

∆

[d.3] Linear Rule: dε = e⊗ 1

ε

====

=
e

[d.4] Chain Rule:

dδ = (∆⊗ 1)(δ ⊗ d)d

====

δ
= δ

∆

====

====

[d.5] Interchange Rule: (d⊗ 1)d = (1⊗ σ)(d⊗ 1)d

====

====

=
====

====

The first axiom [d.1] states that the derivative of a constant map is zero. The second axiom
[d.2] is the Leibniz rule or the product rule for differentiation. The third axiom [d.3] says that the
derivative of a linear map is constant. The fourth axiom [d.4] is the chain rule. The last axiom
[d.5] is the interchange law, which naively states that differentiating with respect to x then y is the
same as differentiation with respect to y then x. It should be noted that [d.5] was not originally a
requirement in [3] but was later added to the definition to ensure that the coKleisli category of a
differential category was a Cartesian differential category [4].

Our first revision of differential categories is that the constant rule [d.1] is in fact derivable:

Lemma 2.5 For a coalgebra modality (!, δ, ε,∆, e) on additive symmetric monoidal category, any
natural transformation dA : !A⊗A −→ !A satisfies the constant rule [d.1].

Proof: By naturality of e and d, and the additive structure, we have the following equalities:

de = d!(0)e = (!(0)⊗ 0)de = 0de = 0

2

Corollary 2.6 For a coalgebra modality (!, δ, ε,∆, e) on additive symmetric monoidal category, the
following are equivalent for a natural transformation dA : !A⊗A −→ !A:

(i) d is a deriving transformation;

(ii) d satisfies the product rule [d.2], the linear rule [d.3], the chain rule [d.4], and the interchange
rule [d.5].

5

3 Bialgebra Modalities, Coderelictions and the ∇-Rule

In [3], Blute, Cockett and Seely observed that if the coalgebra modality came equipped with a
bialgebra structure and a codereliction then one could obtain a deriving transformation. We recall
these ideas, starting with the notion of a bialgebra modality. In a symmetric monoidal category, a
(commutative) bialgebra is a quintuple (A,∇, u,∆, e) such that (A,∇, u) is a commutative monoid
(dual of a cocommutative comonoid), (A,∆, e) is a cocommutative comonoid, and the following
diagrams commute:

A⊗A

e⊗e !!

∇ // A

e

��

K

u⊗u !!

u // A

∆
��

K
u // A

e

��

A⊗A

∇

��

∆⊗∆ // A⊗A⊗A⊗A
1⊗σ⊗1
��

K A⊗A K A⊗A⊗A⊗A
∇⊗∇
��

A
∆

// A⊗A

Definition 3.1 A bialgebra modality [3] on an additive symmetric monoidal category is a
septuple (!, δ, ε,∆, e,∇, u) consisting of a coalgebra modality (!, δ, ε,∆, e), a natural transforma-
tion ∇A : !A ⊗ !A −→ !A, and a natural transformation uA : K −→ !A such that for each ob-
ject A, (!A,∇A, uA,∆A, eA) is a bialgebra, and ε is compatible with ∇ in the following sense:
∇ε = ε⊗ e+ e⊗ ε.

By the naturality of ∇, ∆, u and e we note that for every map f , !(f) is both a monoid and
comonoid morphism. In the original definition of a bialgebra modality in [3] it was also required
that uε = 0; however this is provable:

Lemma 3.2 For a bialgebra modality (!, δ, ε,∆, e,∇, u), uε = 0.

Proof: By the naturality of u and ε, and the additive structure we have the following:

uε = u!(0)ε = uε0 = 0

2

The key ingredient required to obtain a deriving transformation for a bialgebra modality is:

Definition 3.3 A codereliction [3] for a bialgebra modality (!, δ, ε,∆, e,∇, u) is a natural trans-
formation ηA : A −→ !A, such that the following equalities hold:

[dC.1] Constant Rule: ηe = 0

η

e

= 0

[dC.2] Product Rule: η∆ = η ⊗ u+ u⊗ η

∆

η

= η u + u η

6

[dC.3] Linear Rule: ηε = 1

ε

η

=

[dC.4] Chain Rule:

(1⊗ η)∇δ = (∆⊗ η)(1⊗∇)(δ ⊗ η)∇

η

δ

∇
=

∆

δ

η

∇

∇

η

As for the constant rule for the deriving transformation, the constant rule [dC.1] for a codere-
liction can be derived:

Lemma 3.4 For a bialgebra modality (!, δ, ε,∆, e,∇, u), any natural transformation ηA : A −→ !A
satisfies the constant rule [dC.1].

Proof: By naturality of e and η, and the additive structure, we have the following equalities:

ηe = η!(0)e = 0ηe = 0

2

Corollary 3.5 For a bialgebra modality (!, δ, ε,∆, e,∇, u), the following are equivalent for a natural
transformation ηA : A −→ !A:

(i) η is a codereliction;

(ii) η satisfies the product rule [dC.2], the linear rule [dC.3], and the chain rule [dC.4].

In [10] an alternative axiom for the chain rule [dC.4] is used:

[dC.4′] Alternative Chain Rule: ∇δ = (u⊗ η)(δ ⊗ η)∇

δ

η

=

∇

η

∇

δ

u η

In a monoidal storage category – the setting assumed in [10] – [dC.4] and [dC.4′] are equivalent.
However in the setting of a mere bialgebra modality, it is clear that [dC.4] implies [dC.4′]: the
reverse implication, however, does not appear to hold. Thus, at this stage we prove the implication
in one direction:

Lemma 3.6 For a bialgebra modality (!, δ, ε,∆, e,∇, u), any natural transformation ηA : A −→ !A
which satisfies the chain rule [dC.4] also satisfies the alternative chain rule [dC.4′].

7

Proof: The bialgebra structure gives the following chain of equalities:

δ

η

=

δ

η
u

∇ = ∇δ

u

η∆

∇

η

= ∇
δ

u
η

∇

η

u

=

∇

η

∇

δ

u η

2

Let us now consider the relation between deriving transformations and bialgebra modalities.
This is captured by the ∇-rule [3]:

Definition 3.7 For a bialgebra modality (!, δ, ε,∆, e,∇, u), a natural transformation dA : !A ⊗ A
−→ !A is said to satisfy the ∇-rule if:

[d.∇] ∇-Rule: (∇⊗ 1)d = (1⊗ d)∇

===

∇
=

∇

===

Notice this implies that d = (1⊗ u⊗ 1)(∇⊗ 1)d = (1⊗ u⊗ 1)(1⊗ d)∇. This has the consequence
that the ∇-rule implies the interchange rule:

Lemma 3.8 For a bialgebra modality (!, δ, ε,∆, e,∇, u), any natural transformation dA : !A ⊗ A
−→ !A which satisfies the ∇-rule, [d.∇], also satisfies the interchange rule, [d.5].

Proof: By [d.∇] and the commutative monoid structure, we have the following equality:

===

===

=
∇

===

u

∇

===

u

=
∇

===

u

===

u

∇ =

∇

===

u

===

u

∇
=

∇

===

u

===

u

∇ =
===

===

2

Corollary 3.9 For a bialgebra modality (!, δ, ε,∆, e,∇, u), the following are equivalent for a natural
transformation dA : !A⊗A −→ !A:

(i) d is a deriving transformation;

(ii) d satisfies the product rule [d.2], the linear rule [d.3], the chain rule [d.4], and the ∇-rule
[d.∇].

8

All deriving transformations which satisfy the ∇-rule [d.∇] induce a codereliction defined as:

η := A
u⊗1 // !A⊗A d // !A η :=

u

===

Conversely, every codereliction induces a deriving transformation which satisfies the ∇-rule:

d := !A⊗A 1⊗η // !A⊗ !A
∇ // !A d :=

η

∇

Using the same proof in [3] – which was for monoidal storage categories – it is easily seen that:

Theorem 3.10 (Theorem 4.12 [3]) For an additive symmetric monoidal category with a bialgebra
modality, deriving transformations which satisfy the ∇-rule [d.∇] are in bijective correspondence
to coderelictions by:

d 7−→ η := (u⊗ 1)d η 7−→ d := (1⊗ η)∇

4 Additive Bialgebra Modalities

In this section we introduce the concept of an additive bialgebra modality. Our goal will be to show
that a deriving transformation for an additive bialgebra modality induces a codereliction. Since a
codereliction always implies a deriving transformation, this shows that, for an additive bialgebra
modality, deriving transformations and coderiction maps are equivalent. A source of examples of
additive bialgebra modalities will be derived in the next section (see Proposition 5.3). And a source
of non-additive bialgebra modalities will be derived afterwards (see Section 6). Additive bialgebra
modalities require additional coherence with the additive structure:

Definition 4.1 An additive bialgebra modality on an additive symmetric monoidal category
is a bialgebra modality (!, δ, ε,∆, e,∇, u) which is compatible with the additive structure in the
sense that !(0) = eu and !(f + g) = ∆(!(f)⊗ !(g))∇.

First we examine coderelictions for additive bialgebra modalities. When a natural transforma-
tions η is a section of ε, that is, η satisfies [dC.3], we can define four natural transformations:

p0 = ε⊗ e p1 = e⊗ ε
i0 = η ⊗ u i1 = u⊗ η

Notice that since η satisfies the constant rule [dC.1] and the linear rule [dC.3], then from the
properties of a bialgebra modality, we have:

ijpk =

{
0 if j 6= k

1 if j = k

9

which is reminiscent of the identities satisfied by the projection and injection maps of a biproduct.
These maps will be key to the proof of Lemma 4.3 below. For an additive bialgebra modality this
means that we have:

!(ij)!(pk) =

{
eu if j 6= k

1 if j = k

This allows the derivation of the following useful identity:

Lemma 4.2 For an additive bialgebra modality (!, δ, ε,∆, e,∇, u) and a natural transformations
ηA : A −→ !A which satisfies the linear rule [dC.3], the following identity holds:

(!(i0)⊗ !(i1))∇∆(!(p0)⊗ !(p1)) = 1

Proof: By the additive bialgebra modality, we have the following equality:

∆

p1p0

∆

i1i0

=

p1p0

i1i0

∇

∆∆

∇

=

∇

∆∆

∇

i0 i1 i1

p1p0

i0

p1p0

=
∇

∆
e

u

e

u

∆

∇

=

2

For an additive bialgebra modality, the linear rule [dC.3] implies the product rule [dC.2]:

Proposition 4.3 For an additive bialgebra modality (!, δ, ε,∆, e,∇, u), any natural transformation
ηA : A −→ !A which satisfies the linear rule [dC.3], also satisfies the product rule [dC.2].

Proof: Notice that by naturality of η, we have that:

η!(f + g) = (f + g)η = fη + gη = η!(f) + η!(g)

Then using ij and pk, we have the following:

η u + u η =
∆

η

e

u

+
∆

η

e

u

=
∆

η

i1

p1p0

i1
+

∆

η

i0

p1p0

i0

=
∆

η

p1p0

i1

+
∆

η

p1p0

i0

=
∆

η

p1p0

i0 + i1
=

∆

η

i0 + i1

p1p0

i0 + i1
=

∆

η

2

10

Corollary 4.4 For an additive bialgebra modality (!, δ, ε,∆, e,∇, u), the following are equivalent
for a natural transformation ηA : A −→ !A:

(i) η is a codereliction;

(ii) η satisfies the linear rule [dC.3] and the chain rule [dC.4].

Turning our attention to deriving transformations for additive bialgebra modalities, we begin
by noticing that satisfying the Leibniz rule is equivalent to satisfying the ∇-rule:

Proposition 4.5 For an additive bialgebra modality (!, δ, ε,∆, e,∇, u), the following are equivalent
for a natural transformation dA : !A⊗A −→ !A which satisfies the linear rule [d.3]:

(i) d satisfies the product rule [d.2];

(ii) d satisfies the ∇-rule [d.∇].

Proof:
[d.∇] ⇒ [d.2]: It is easy to see that since d satisfies [d.3] that (u⊗ 1)d satisfies [dC.3], the linear
rule for coderelictions. However, by Lemma 4.3, this implies that (u ⊗ 1)d satisfies [dC.2], the
product rule for coderelictions. Therefore, we have:

===

∆
=

∆

===

u

∇

=
∆

∇

u

===

=

u

===

∇

∆

∇

∆

=
u

∇

∆

∇

===

u

+

u

===

∇

∆

∇

u

=

∆

===

u

∇
+

∆

===

u

∇
=

===

∆

+
===

∆

[d.2] ⇒ [d.∇]: By the properties of ij and pk, and the identity of Lemma 4.2, we have:

∇

===

=

∇

===

i0

p0 p1

∇

∆

i1

p1

i1

+

∇

===

i0

p0 p1

∇

∆

i1

p0

i1

︸ ︷︷ ︸
=0

=
===

i0

∇

∆

i1

⊗i1

p1p0

∇

+
===

⊗

p0

i1

p1

∇

∇

i0

∆

i1

︸ ︷︷ ︸
=0

11

= ===

i0

∇

i1

⊗i1

p1p0

∇

∆

= ===

i0

∇

i1 ⊗i1

p0 + p1

=

===

i0

∇

i1 i1

p0 + p1 p0 + p1 p0 + p1

=
===

∇

2

Corollary 4.6 For an additive bialgebra modality (!, δ, ε,∆, e,∇, u), the following are equivalent
for a natural transformation dA : !A⊗A −→ !A:

(i) d is a deriving transformation;

(ii) d satisfies the product rule [d.2], the linear rule [d.3], and the chain rule [d.4];

(iii) d satisfies the linear rule [d.3], the chain rule [d.4], and the ∇-rule [d.∇].

Therefore, we obtain the following theorem:

Theorem 4.7 For an additive bialgebra modality, every deriving transformation satisfies the ∇-
rule, [d.∇], and thus is induced equivalently by a codereliction.

5 Additive Linear Categories and the Monoidal Rule

We now turn our attention to the case when the coalgebra modality is monoidal. Recall that
a symmetric monoidal functor [15] is a functor ! equipped with a natural transformation m⊗ :
!A ⊗ !B −→ !(A ⊗ B) and a map mK : K −→ !K satisfying certain coherences. This can be
extended to defining a symmetric monoidal comonad by asking that δ and ε be monoidal natural
transformations. For a full detailed list of the coherences for symmetric monoidal comonads, see
[1]. The string diagrams representations of m⊗ and mK are as follows:

m⊗ =
⊗

mK =
m

Definition 5.1 A monoidal coalgebra modality on a symmetric monoidal category is a septu-
ple (!, δ, ε,m⊗,mK ,∆, e) consisting of a coalgebra modality (!, δ, ε,∆, e) and a symmetric monoidal
endofunctor (!,m,mK), satisfying ∆ and e are monoidal transformations , that is, the following
diagrams commute:

12

(i) ∆ and e are monoidal transformations (or equivalently m⊗ and mK are comonoid morphisms),
that is, the following diagrams commute:

K

e

��

!K

e

��
!A⊗ !B

m⊗

44

∆⊗∆

��

m⊗ // !(A⊗B)

∆

��

K
mK //

mK⊗mK ##

!K

∆

��
!A⊗ !A⊗ !B ⊗ !B

1⊗σ⊗1

��

!K ⊗ !K

!A⊗ !B ⊗ !A⊗ !B
m⊗⊗m⊗

// !(A⊗B)⊗ !(A⊗B)

(ii) ∆ and e are !-coalgebra morphisms, that is, the following diagrams commute:

!A

∆

��

δ // !!A

!(∆)

��

!A

e

��

δ // !!A

!(e)

��
!A⊗ !A

δ⊗δ
// !!A⊗ !!A m⊗

// !(!A⊗ !A) K mK

// !(K)

In string diagrams, that ∆ and e are both monoidal transformations and !-colagebra morphisms
is expressed as follows:

⊗
∆

=

∆

⊗⊗
∆

∆

m

=

m m ⊗
e

=
e e e

m

=

∆

δ

=

∆

δδ ⊗ e

δ

=
e

m

Definition 5.2 A linear category [1, 5] is a symmetric monoidal category with a monoidal
coalgebra modality; an additive linear category is a linear category which is also an additive
symmetric monoidal category.

A monoidal coalgebra modality on an additive linear category induces an additive bialgebra

13

modality. The multiplication and unit are respectively:

∇ := !A⊗ !A
δ⊗δ // !!A⊗ !!A

m⊗ // !(!A⊗ !A)
!(ε⊗e+e⊗ε) // !A ∇ :=

⊗δ δ

e eεε +

K
mK // !K

!(0) // !A
u

:=

m

0

Proposition 5.3 The monoidal coalgebra modality of an additive linear category is an additive
bialgebra modality.

Proof: See Appendix A. 2

Conversly an additive bialgebra modality induces a monoidal coalgebra modality. The monoidal
structure m⊗ and mK are defined respectively as:

!A⊗!B

m⊗ :=

��

δ⊗δ // !A⊗!B
!(1⊗u)⊗!(u⊗1) // !(!A⊗!B)⊗!(!A⊗!B)

∇ // !(!A⊗!B)

δ
��

!(A⊗B) !(!A⊗!B)
!(ε⊗ε)

oo !(!(!A⊗!B)⊗!(!A⊗!B))
!(!(ε⊗e)⊗!(e⊗ε))
oo !!(!A⊗!B)

!(∆)
oo

K
u //

mK :=
��

!K

δ

��
!(K) !!K

!(e)
oo

Represented in string diagrams as:

⊗
:=

δ

u

ε

ε e

δ

u

∇

δ

∆

ε

e ε

m

:=
e

u

δ

14

Proposition 5.4 Every additive bialgebra modality is a monoidal coalgebra modality.

Proof: See Appendix B. 2

These constructions, between additive bialgebra modalities and monoidal coalgebra modalities,
are in fact inverses of each other.

Theorem 5.5 For an additive symmetric monoidal category, monoidal coalgebra modalities corre-
spond bijectively to additive bialgebra modalities. Therefore, the following are equivalent:

(i) An additive linear category;

(ii) An additive symmetric monoidal category with an additive bialgebra modality.

Proof: Starting from an monoidal coalgebra modality, we first check that we re-obtain m⊗:

ε

u

e

δ

ε

δ

∆

e

u

∇

ε

δ

ε

=

ε

u

e ε

δ

e

u

∇

ε

δ

ε

δδ

∆

⊗
=

δδ

⊗

ε

u

e e

∇

u

ε

∆

ε ε

δ δ

=

δδ

⊗ε ε =
⊗

Next we check that we get back mK :

e

δ

m

0

=

e

!(0)

m

δ

=
e

m

m
=

m

Starting with an additive bialgebra modality, we first check that we re-obtain the multiplication:

ε+ e

δ⊗

e ε

δ

=

δ⊗

e ε

δ

∇

eε

∆

=

δ

e ε

δ

∇

eε

⊗
∆

⊗
∆

15

=

∇

⊗

∆

⊗

∆

δ δ δ δ

ε εee =

∇

⊗

∆

⊗

∆

e e

m m = ∇

Finally we prove that we re-obtain the unit:

0

e

δ

u

=
0

δ

u

=

0

ε

δ

u

=
u

2

The identities expressing compatibility between the bialgebra modality and the monoidal coal-
gebra, which were observed in [10] (Theorem 3.1) to hold in an additive monoidal storage category,
also hold in an additive linear category:

Proposition 5.6 In an additive linear category, the following diagrams commute:

!A

e

��

1⊗u // !A⊗ !B

m⊗

��

!A⊗ !A

δ⊗δ
��

∇ // !A

δ

��

!A⊗ !B ⊗ !B
1⊗∇ //

∆⊗1⊗1

��

!A⊗B

m⊗

��

K u
// !(A⊗B) !!A⊗ !!A

m⊗

��

!!A !A⊗ !A⊗ !B ⊗ !B

1⊗σ⊗1

��
!(!A⊗ !A)

!(∇)

::

!A⊗ !B ⊗ !A⊗ !B

m⊗⊗m⊗
��

!(A⊗B)

!(A⊗B)⊗ !(A⊗B)

∇

66

Proof: For the first square on the left we use the naturality of m⊗, the unit laws of the monoidal
functor and that !(0) splits:

⊗
m

0

=

⊗
m

0

=

δ

0

ε
= 0 =

u

e

=

e

0

m

16

For the middle square we use the naturality of m⊗, the comonad δ square and that δ is a monoidal
transformation:

δ δ⊗
φ

δ

=

δ δ⊗
δ

!(φ)

=

δδ ⊗

⊗

!(φ)

δδ

=

δδ ⊗

⊗
φ

δδ

=

δδ ⊗

φ

δ ⊗ δ

For the square on the right we use that δ is a monoidal transformation, naturality of m⊗, associa-
tivity and symmetry of m⊗, that e and ε are monoidal transformations and that ∆ is a !-coalgebra
morphism:

∆

⊗ ⊗

e

⊗

+ eε

δ δ

ε

=

∆

e

⊗

+ eεε

δ

⊗

δ⊗ δ

⊗

δ⊗

=

∆

e

⊗

+

ε

⊗δ δ ⊗δ δ

⊗ ⊗
ε

⊗
e

⊗

=

∆

e

⊗

+

ε

⊗δ δ ⊗δ δ

⊗ ⊗
ε

⊗
e

⊗
=

⊗
⊗δ δ

δ

∆

εε ee e eεε
+

=

δ

+

⊗
δ δ

εe

ε

e

⊗

eεe

ε

∆ ∆

=

δ

+

⊗
δ δ

εeε

⊗

εeε

=

δ

⊗
e

⊗

+ eε

δ δ

ε

ε

=

⊗
e

⊗

+ eε

δ δ

ε

2

17

We turn our attention to the relation between the monoidal structure and the differential
structure. In [10] Fiore introduced another axiom relating η to the monoidal structure:

[dC.m] Monoidal Rule: (1⊗ η)m⊗ = (ε⊗ 1)η

η

⊗
=

⊗
η

ε

It turns out that coderelictions for the additive bialgebra modalities always satisfy the monoidal
rule [dC.m]:

Proposition 5.7 With respect to the induced bialgabra modality, in an additive linear category all
coderelictions satisfy the monoidal rule [dC.m].

Proof: By Lemma 4.2 and the fact that ∆ is a !-coalgebra morphism, we first have that:

⊗
=

i0

p1

∆

i1

∆

δ

p0

δ

ε

⊗
ε

=

ε

p0

∆

p1

i0 i1

ε

∇

δδ ⊗
∆

=
p1

i1

δ

ε

∇

∆

i0

p0

ε

where ij and pk are defined as in the previous section. Expressing m⊗ as above, then by the linear
rule [dC.3], chain rule [dC.4], the naturality of u and ∇, and the first diagram of Lemma 5.6 we
have the following equality :

η

⊗
=

i1

∇

ηi0

p1

∆

εε

δ

p0

=

∇

η

∆

∇

η

δ

i0 i1

p1

∆

εε

p0

=

∇

η

∆

∇

i1

δ

η

i0 i0

p1

∆

εε

p0

=

η

∆

∇

δ

η

i0 i1

u

∇
i0 i1
∇

p1

∆

εε

p0

=

∆

∇

δ

η

i0 i1

u

∇
i0 i1
∇

p0

ε

p1

ε

∆

η

p0

ε

p1

ε

∆

⊗

18

=

∆ η

u

∇

ε ε

η

⊗
⊗

=

∆ η

u

∇

ε ε

η

⊗e

=
⊗
η

ε

2

Conversely, the alternative chain rule [dC.4′] and the monoidal rule [dC.m] imply the chain
rule [dC.4].

Lemma 5.8 In an additive linear category, any natural transformation ηA : A −→ !A which satisfies
the alternative chain rule [dC.4′] and the monoidal rule [dC.m], on the the induced additive
bialgebra modality also satisfies the chain rule [dC.4].

Proof: By the compatiblity relations of Proposition 5.6 and the coalgebra modality requirements
we have:

η

δ

∇
= ⊗

η

δ

δ

∇

= ⊗ ∇

δ

∇

δ η

u
η

=
⊗

∆

δ

∇

δ

ηu

η

⊗

∇

=
⊗

∆

∇

δ

ηu

η

⊗

∇

δ

δ

=
⊗

∆

δ

η
u

η

⊗

∇

δ δ

∇
∇

=
⊗

∆

u

η

∇

∇

δ

δ ∇

η

ε

=

∆

δ

η

∇

∇

η

2

Corollary 5.9 For an additive linear category the following are equivalent for a natural transfor-
mation ηA : A −→ !A and the induced additive bialgebra modality:

(i) η is a codereliction;

(ii) η satisfies the linear rule [dC.3] and the chain rule [dC.4];

19

(iii) η satisfies the linear rule [dC.3], the alternative chain rule [dC.4′] and the monoidal rule
[dC.m].

Part (iii) is the definition of Fiore’s creation map [10]: this shows that the original definition
of a codereliction is equivalent to Fiore’s creation map.

Now we explore deriving transformations of additive linear categories. The compatibility be-
tween a deriving transformation and the monoidal structure is described by the monoidal rule [10]–
this is the strength rule which was the subject of Fiore’s addendum:

[d.m] Monoidal Rule: (1⊗ d)m⊗ = (∆⊗ 1⊗ 1)(1⊗ ε⊗ 1⊗ 1)(1⊗ σ ⊗ 1)(m⊗ ⊗ 1⊗ 1)d

⊗===

= ⊗
∆

⊗
===

ε

Fiore’s creation operator [10] was defined to satisfy the linear rule [d.3], the chain rule [d.4],
the ∇-rule [d.∇], and the monoidal rule [d.m] – in his addendum, he pointed out the latter was
redundant. It turns out that when a natural transformation satisfies both the linear rule [d.3] and
the chain rule [d.4], then the monoidal rule is equivalent to both the ∇-rule and the Leibniz rule:

Proposition 5.10 For the induced additive bialgebra modality of an additive linear category, the
following are equivalent for a natural transformation dA : !A ⊗ A −→ A which satisfies the linear
rule [d.3] and the chain rule [d.4]:

(i) d satisfies the Leibniz rule [d.2];

(ii) d satisfies the ∇-rule [d.∇];

(iii) d satisfies the monoidal rule [d.m]

Proof: Since this is an extension of Proposition 4.5, it suffices to show that the ∇-rule [d.∇] and
the monoidal rule [d.m] are equivalent.
[d.∇] ⇒ [d.m]: It is easy to see that since d satisfies the linear rule [d.3] and the chain rule
[d.4], (u⊗ 1)d satisfies the codereliction linear rule [dC.3] and chain rule [dC.4], and therefore by
Corollary 5.9 is a codereliction and which by Proposition 5.7 satisfies the codereliction monoidal
rule [dC.m]. Therefore, by the compatibility relations of Lemma 5.6, we have:

⊗===

=

===

∇⊗

u

=
⊗
∆

⊗
∇

u

===

=
⊗
∆

∇

u

===

⊗
ε

= ⊗
∆

⊗
===

ε

20

[d.m] ⇒ [d.∇]: By expanding ∇ using m⊗, we obtain the following equality:

∇

===

=

===

ε ε

⊗

+ e

δ

e

δ

=

ε ε

⊗

+ ee

δ ===

δ
===

∆

=

e

δ
===

+ ε e

δ

∆

ε

∆

⊗
ε

⊗
===

=

===

∆∆

===

ε ε

⊗

+ e

δ

e

δ
e ε

+

===

∆∆

===

ε ε

⊗

+ e

δ

e

δ

ε

e

︸ ︷︷ ︸
=0

=

e

∆

===

∇
=

===

∇

2

Corollary 5.11 For the induced additive bialgebra modality of an additive linear category, the
following are equivalent for a natural transformation dA : !A⊗A −→ A:

(i) d is a deriving transformation;

(ii) d satisfies the product rule [d.2], the linear rule [d.3], and the chain rule [d.4];

(iii) d satisfies the linear rule [d.3], the chain rule [d.4], and the ∇-rule [d.∇];

(iv) d satisfies the linear rule [d.3], the chain rule [d.4], and the monoidal rule [d.m].

Finally, this gives the following theorem:

Theorem 5.12 For the induced additive bialgebra modality of an additive linear category, all de-
riving transformations satisfy the monoidal rule [d.m] and are induced by a codereliction.

6 Non-Additive Bialgebra Modalities

In this section we give a construction of non-additive bialgebra modalities induced by an additive
algebra modalities. Given an additive bialgebra modality (!, δ, ε,∆, e,∇, u) on an additive symmet-
ric monoidal category X, for each object B consider the functor !B : X −→ X defined on objects as

21

!BA = !B ⊗ !A, and on a map f : A −→ A′ as !B(f) = 1⊗ !(f) : !B ⊗ !A −→ !B ⊗ !A′. Consider the
natural transformations δB : !B(A) −→ !B(!B(A)) and εB : !B(A) −→ A defined as follows:

δB := !B ⊗ !A
∆⊗1 // !B ⊗ !B ⊗ !A

1⊗δ⊗δ // !B ⊗ !!B ⊗ !!A
1⊗m⊗ // !B ⊗ !(!B ⊗ !A)

εB := !B ⊗ !A
e⊗ε // A

which expressed in the graphical calculus gives:

δB :=

∆

δ ⊗ δ εB := εe

Lemma 6.1 (!B, δB, εB) is a comonad.

Proof: We must show the following three identities:

1. δBδB = δB!B(δB): Here we use that δ is a monoidal transformation, the naturalitty of m⊗,
the co-associativity of ∆, the associativity of m⊗, the co-associativity of the comonad, and
that ∆ is a !-coalgebra morphism:

δ⊗δ

∆

δ⊗δ

∆ =

δ
δ

∆

⊗

δ

∆

δ
δ

⊗

⊗ =

δ
δ

∆

⊗

δ

∆

δ
δ

⊗

⊗ =

δδ

∆

⊗

δ

∆

δ⊗δ

⊗

=

δ
δ

∆

⊗

δ

∆

δ⊗δ

⊗
=

δ

⊗

∆

δ⊗δ

δ

∆

=

δ⊗δ

∆

δ⊗δ

∆

22

2. δBεB = 1: Here we use the counit law of the comultiplication, that ε is a monoidal transfor-
mation, and the triangle identities of the comonad:

δ⊗δ

∆

εe

=
δ

ε ε

δ

=

3. δB!B(εB) = 1: Here we use the naturality of m⊗, that e is a monoidal transformation, the
comonad triangle identities, the unit law of m⊗, and the counit law for the comultiplication:

δ⊗δ

∆

e ε

= ε

⊗
e

∆

δδ

=

⊗
m

∆

e

=

2

The bialgebra structure of !BA is given by the standard tensor product of bialgebras, that is,
the comultiplication ∆B and multiplication ∇B are defined respectively as:

∆B := !B ⊗ !A
∆⊗∆ // !B ⊗ !B ⊗ !A⊗ !A

1⊗σ⊗1 // !B ⊗ !A⊗ !B ⊗ !A

∇B := !B ⊗ !A⊗ !B ⊗ !A
1⊗σ⊗1 // !B ⊗ !B ⊗ !A⊗ !A

∇⊗∇ // !B ⊗ !A

while the counit eB and the unit uB are:

eB := !B ⊗ !A
e⊗e // K uB := K

u⊗u // !B ⊗ !A

Proposition 6.2 (!B, δB, εB,∆B, eB,∇B, uB) is a bialgebra modality.

Proof: We first show that δB preserves the comultiplication. For this we use that δ preserves the
comultiplication, the coassociativity of the comultiplication, and that ∆ is a monoidal transforma-
tion:

δ

∆

⊗δ δ

∆

⊗δ

∆∆

=

∆

⊗ ⊗

∆

∆

δ

∆

δ

=

∆

δ ⊗ δ

∆∆

23

Next we show the compatibility relation between εB and the multiplication. Here we use the
compatibility between the counit and the multiplication, and the compatibility between ε and the
multiplication:

∇∇

e ε

= e ε e e + e εee

2

In general, this bialgebra modality is not additive (unless !(B) ∼= K). In particular, for the zero
map we have that:

!B(0) = 1⊗ !(0) = (1⊗ e)(1⊗ u) 6= (e⊗ e)(u⊗ u) = eBuB

Every codereliction η on the additive bialgebra modalities induces a codereliction ηB : A −→ !B(A)
defined as follows:

A
u⊗η // !B ⊗ !A ηB := u η

Proposition 6.3 ηB is a codereliction on (!B, δB, εB,∆B, eB,∇B, uB).

Proof: We must show [dC.2], [dC.3], and [dC.4]:

[dC.2]: Here we use the compatibility between the unit and the counit, and that η satisfies the
product rule [dC.2]:

u η

e ε
=

[dC.3]: Here we use the compatibility between the unit and the comultiplication, and that η
satisfies the linear rule [dC.3]:

u η

∆∆
= η uu u + ηu uu

24

[dC.4]: Here we use coassociativity of the comultiplication, the third diagram of Proposition 5.6,
that δ preserves the comultiplication, and that η satisfies the chain rule [dC.4] and the monoidal
rule [dC.m]:

∆∆

δ

∆

⊗δ

∇∇

ηu

∇

u

∇

η

⊗
=

∆∆

δ

∆

⊗δ

∇

η

∇

η

⊗

δ

ε

=

∆∆

δ

∆

⊗δ

∇

η

∇

⊗δ
η

=

∆∆

δ

∆

⊗

∇

η

∇

⊗
η

δ

=

∆∆

δ

∇

η

η

δ ⊗
∇

=
δ

∆

⊗δ

∇

η

=

δ

∆

⊗δ

∇

u η

∇

2

The induced deriving transformation dB:

!B ⊗ !A⊗A 1⊗d // !B ⊗ !A

intuitively, this should be thought of as the partial derivative with respect to A.

7 Seely Isomorphisms and the Biproduct Completion

In a symmetric monoidal category with finite products × and terminal object T, a coalgebra
modality has Seely isomorphisms [17, 1, 5] if the natural transformations χ and χT defined
respectively as:

!(A×B)
∆ // !(A×B)⊗ !(A×B)

!(π0)⊗!(π1) // !A⊗ !B !(T)
e // K

are isomorphisms, so !(A×B) ∼= !A⊗ !B and !(T) ∼= K.

Definition 7.1 A monoidal storage category [5] is a symmetric monoidal category with finite
products and a coalgebra modality which has Seely isomorphisms.

25

Monoidal storage categories were called new Seely categories in [1, 16]. As explained in [5],
every coalgebra modality which satisfies the Seely isomorphisms is a monoidal coalgebra modality,
where m⊗ is

!A⊗ !B
χ−1

// !(A×B)
δ // !!(A×B)

!(χ) // !(!A⊗ !B)
!(ε⊗ε) // !(A⊗B)

and mK is defined as

K
χ−1
T // !(T)

δ // !!(T)
!(χT) // !(K)

Conversly, in the presence of finite products, every monoidal coalgebra modality satisfies the Seely
isomorphisms [1] where the inverse of χ is

!A⊗ !B
δ⊗δ // !!A⊗ !!B

m⊗ // !(!A⊗ !B)
!(〈ε⊗e,e⊗ε〉) // !(A×B)

while the inverse of χT is

K
mK // !(K)

!(t) // !(T)

where t : K −→ T is the unique map to the terminal object. Therefore we obtain the following
theorem (Theorem 3.1.6 [5]):

Theorem 7.2 Every monoidal storage category is a linear category and conversely, every linear
category with finite products is a monoidal storage category.

This together with Proposition 7.7 below provides, as discussed in the introduction, a rather indirect
verification of Theorem 5.5. We now turn our attention to monoidal storage categories with an
additive structure:

Definition 7.3 An additive monoidal storage category is a monoidal storage category which
is also an additive symmetric monoidal category.

Notice, this implies that additive monoidal storage categories have finite biproducts × and a
zero object 0. As noted in [3], the coalgebra modality of an additive monoidal storage category is
an additive bialgebra modality where the multiplication and unit are defined respectively as:

!A⊗ !A
χ−1

// !(A×A)
!(∇×) // !(A) K

χ−1
0 // !0

!(0) // !A

Conversly, every additive bialgebra modality satisfies the Seely isomorphisms where χ−1 and χ−1
0

are defined respectively as:

!A⊗ !B
!(ι0)⊗!(ι1) // !(A×B)⊗ !(A×B)

∇ // !(A×B) K
u // !0

It is easy to check that this indeed gives the Seely isomorphisms, therefore we have:

Theorem 7.4 The following are equivalent:

(i) An additive monoidal storage category;

26

(ii) An additive linear category with finite biproducts;

(iii) An additive symmetric monoidal category with finite biproducts and an additive bialgebra
modality.

Every additive bialgebra modality induces an additive monoidal storage category via the biprod-
uct completion. We first recall the biproduct completion for an additive category [15]. Let X be
an additive category. Define the biproduct completion of X, B[X], as the category whose objects
are list of objects of X: (A1, . . . , An), including the empty list (), and whose maps are matrices of
maps of X, including the empty matrix:

(A1, . . . , An)
[fi,j] // (B1, . . . , Bm)

where fi,j : Ai −→ Bj . The composition in B[X] is the standard matrix multiplication:

[fi,j][gl,k] = [
∑

fi,kgk,j]

while the identity is the standard identity matrix:

(A1, . . . , An)
[δi,j] // (A1, . . . , An)

where δi,j = 0 if i 6= j, and δi,i = 1. It is easy to see that B[X] does in fact have biproducts:

Lemma 7.5 B[X] is a well-defined category with biproducts.

If X is an additive symmetric monoidal category, then so is B[X]. The monoidal unit is the
same as in X, the tensor product of objects is:

(A1, . . . , An)⊗ (B1, . . . , Bm) = (A1 ⊗B1, . . . , A1 ⊗Bm, . . . , An ⊗Bn)

while the tensor product of maps is the standard Kronecker product of matrices.

Lemma 7.6 If X is an additive symmetric monoidal category, then so is B[X].

If X admits an additive bialgebra modality, then B[X] is an additive monoidal storage category
where the Seely isomorphisms are strict, i.e., equalities, and in particular it is an additive linear
category. We give the additive bialgebra modality of B[X], and leave it to the reader to check that
it is in fact an additive bialgebra modality. The functor ! : B[X] −→ B[X] is defined on objects as:

!(A1, . . . , An) = !A1 ⊗ . . .⊗ !An

and on a map [fi,j] : (A1, . . . , An) −→ (B1, . . . , Bm), !([fi,j]) is represented in string diagrams below:

!B1

∇

∆

!A1 !Ai

∆

!An

∆

.

!Bj

∇

!Bm

∇
.

f1,1 fi,mfi,1 fi,j fn,m.

27

The bialgebra structure is given by the standard tensor product of bialgebras (as discussed in the
previous section), the comonad comultiplication !(A1, . . . , An) −→ !!(A1, . . . , An) is represented in
string diagrams as:

u

!A1

∆

∇

δ

δ

. . . u uu

δ

!An

. . .u u

δ

!Ai

.

e . . . e. . .ee ε.e . . .ε . . .e ε

!(!A1 ⊗ . . .⊗ !An)

while the comonad counit is the following matrix:[
εA1 ⊗ e⊗ . . .⊗ e, . . . , e⊗ . . .⊗ εAi ⊗ . . .⊗ e, . . . , e⊗ e⊗ . . .⊗ εAn

]
: !A1⊗. . .⊗!An −→ (A1, . . . , An)

Proposition 7.7 If X has an additive bialgebra modality, then B[X] is an additive monoidal storage
category.

If the additive bialgebra modality of X comes equipped with a codereliction η then the additive
bialgebra modality of B[X] comes equipped with a codereliction defined as follows:

ηA1 ⊗ u⊗ . . .⊗ u
. . .

u⊗ . . .⊗ ηAi ⊗ . . .⊗ u
. . .

u⊗ u⊗ . . .⊗ ηAn

 : (A1, . . . , An) −→ !A1 ⊗ . . .⊗ !An

Proposition 7.8 If X is a differential category with an additive bialgebra modality, then B[X] is a
differential category which is an additive monoidal storage category.

8 Separating Examples

Here we present an overview of separating examples between the various structures defined through-
out this paper. To help understand what the examples illustrate we present a Venn diagram which

28

classifies the examples we shall give below.

8.3

Coalgebra Modality

8.12

Monoidal Coalgebra Modality

Additive Bialgebra Modality

Bialgebra Modality

8.11

Differential Category

8.7

8.1

8.10

8.2

(Thm 5.5)

A well-known example of a differential category (whose coalgebra modality also happens to be
monoidal) comes from the free symmetric algebra construction which actually gives a co-differential
category. We briefly recall this example (see [3] for more details):

Example 8.1 Let R be a commutative ring. For an R-module M , define Sym(M), called the free
symmetric algebra over M , as following (see Section 8, Chapter XVI in [14] for more details):

Sym(M) =
∞⊕
n=0

Symn(M) = R⊕M ⊕ Sym2(M)⊕ ...

where Symn(M) is simply the quotient of M⊗
n

by the tensor symmetry equalities:

a1 ⊗ ...⊗ ai ⊗ ...⊗ an = aσ(1) ⊗ ...⊗ aσ(i) ⊗ ...⊗ aσ(n)

Sym(M) is a commutative algebra where the multiplication ∇ : Sym(M)⊗ Sym(M) −→ Sym(M) is
the concatenation of words ∇(v1 ⊗ ...⊗ vn, w1 ⊗ ...⊗wm) = v1 ⊗ ...⊗ vn ⊗w1 ⊗ ...⊗wm which we
then extend by linearity, and the unit u : R −→ Sym(M) is the injection map of R into Sym(M).
Furthermore, Sym(M) is the free commutative algebra over M , that is, we obtain an adjunction:

MODR

Sym //
CALGR⊥

U
oo

29

The unit η : M −→ Sym(M) is the injection map of M into Sym(M) and for an algebra A, the
counit ε : Sym(A) −→ A is defined on pure tensors as ε(a1 ⊗ ... ⊗ an) = a1...an, which we then
extend by linearity. The induced monad (Sym, µ, η) is an algebra modality (the dual of a coalgebra
modality) the multiplication of the monad is an algebra morphism (as it’s a map in the category
of algebras). Furthermore, this algebra modality satisfies the Seely isomorphism [14], that is:

Sym(M ×N) ∼= Sym(M)⊗ Sym(N) Sym(0) ∼= R

which implies that the free symmetric algebra adjunction induces an additive linear category (or
equivalently an additive Seely category) structure on MODR. Furthermore, it comes equipped with a
deriving transformation, making MODR into a co-differential category. The deriving transformation
d : Sym(M) −→ Sym(M)⊗M on pure tensors is defined as follows:

d(a1 ⊗ ...⊗ an) =
n∑
i=1

(a1 ⊗ ...⊗ ai−1 ⊗ ai+1 ⊗ ...⊗ an)⊗ ai

which we then extend by linearity (if this map looks backwards, recall that MODR is a co-differential
category).

It is important to note that this differential category structure on MODR can be generalized to
the category of modules over any ring R. In fact, this example can be generalized further. Indeed,
the free symmetric algebra construction on appropriate additive symmetric monoidal categories
induces a differential category structure, such as on the category of sets and relations (see [3] for
more details).

Example 8.2 Convenient vector spaces provides an another example (given by R. Blute, T.
Ehrhard and C. Tasson) of a co-differential category with a monoidal algebra modality [6].

Interestingly, the free differential algebra construction – which one might suppose would give
rise rather naturally to a modality with a differential – gives an example of an additive bialgebra
modality which does not admit a deriving transformation:

Example 8.3 Let R be a commutative ring. A (commutative) differential algebra (of weight 0)
over R (see [12]) is a pair (A,D) consisting of a commutative R-algebra A and a linear map D : A
−→ A such that D satisfies the Leibniz rule:

D(ab) = D(a)b+ aD(b) ∀a, b ∈ A

where the multiplication of the R-algebra A has been written as juxtaposition. A map of differ-
ential algebras f : (A,D) −→ (C,D′) is an R-algebra morphism f : A −→ C such that fD′ = Df .

The forgetful functor from the category of differential algebras over R, CDAR to modules over
R has a left adjoint:

MODR

DIFF //
CDAR⊥

U
oo

which induces an algebra modality, Diff, on the category of modules: we shall now give an explicit
description of this modality and, furthermore, show that it is an additive bialgebra modality which
does not admit a deriving transformation.

30

Let M be an R-module, then the free commutative differential R-algebra Diff(M) is defined as
follows:

Diff(M) = Sym(
∞⊕
n=0

M)

where the unit and multiplication are just that of the symmetric algebra, u : R −→ Sym(
∞⊕
n=0

M)

and ∇ : Sym(
∞⊕
n=0

M)⊗ Sym(
∞⊕
n=0

M) −→ Sym(
∞⊕
n=0

M). The differential is obtained by “shifting” the

infinite sum (on which the symmetric algebras is built) up one

φ := 〈ιn+1〉∞n=0 :
∞⊕
n=0

M −→
∞⊕
n=0

M

and defining the map D : Diff(M) −→ Diff(M) as:

Sym(
∞⊕
n=0

M)
d // Sym(

∞⊕
n=0

M)⊗
∞⊕
n=0

M
1⊗φ // Sym(

∞⊕
n=0

M)⊗
∞⊕
n=0

M
d◦ // Sym(

∞⊕
n=0

M)

where d is the deriving transformation of the free symmetric algebra modality and d◦ := (1⊗ η)∇
(where η is the unit of the free symmetric algebra monad). By the associativity and unit laws of
the multiplication, we note the following identities d◦ satisfies:

(u⊗ 1)d◦ = η

(∇⊗ 1)d◦ = (1⊗ 1⊗ d◦)∇

We then have:

∇D = ∇d(1⊗ φ)d◦

= (1⊗ d)(∇⊗ 1)(1⊗ φ)d◦ + (d⊗ 1)(1⊗ σ)(∇⊗ 1)(1⊗ φ)d◦

= (1⊗ d)(1⊗ 1⊗ φ)(∇⊗ 1)d◦ + (d⊗ 1)(1⊗ φ⊗ 1)(1⊗ σ)(∇⊗ 1)d◦

= (1⊗ d)(1⊗ 1⊗ φ)(1⊗ 1⊗ d◦)∇+ (d⊗ 1)(1⊗ φ⊗ 1)(d◦ ⊗ 1)∇
= (1⊗ D)∇+ (D⊗ 1)∇

showing that it is a differential on the algebra.
To show it is a monad set the unit to be the natural transformation α : M −→ Diff(M) defined

as

α := M
ι0 //

∞⊕
n=0

M
η // Sym(

∞⊕
n=0

M)

where η is the unit of the free symmetric algebra monad, and define the multiplication as the
natural transformation ν : Diff(Diff(M)) −→ Diff(M) to be

Sym(
∞⊕
n=0

(Sym(
∞⊕
n=0

M)))
Sym(ψ) // Sym(Sym(

∞⊕
n=0

M))
µ // Sym(

∞⊕
n=0

M)

where µ is the multiplication of the free symmetric algebra monad and ψ := 〈Dn〉∞n=0 :
∞⊕
n=0

A −→ A

is the map with ιkψ = Dk where A is a differential algebra: notice that ψ is natural for differential
algebra maps. We then have:

31

Lemma 8.4 (Diff, ν, α) is a monad on MODR.

Proof: We must verify the three monad identities:

Diff(ν)ν = νν: Here we use that ψ is natural with respect to differential algebra morphisms, that
ν is a differential algebra morphism, the monad associativity of µ, and the naturality of µ:

Diff(ν)ν = Sym(
∞⊕
n=0

ν)ν = Sym(
∞⊕
n=0

ν)Sym(ψ)µ = Sym((
∞⊕
n=0

ν)ψ)µ

= Sym(ψν)µ = Sym(ψ)Sym(ν)µ = Sym(ψ)Sym(Sym(ψ)µ)µ

= Sym(ψ)Sym(Sym(ψ))µµ = Sym(ψ)µSym(ψ)µ = νν

αν = 1: Here we use the naturality of η, the definition of ψ, and the monad triangle identity of µ
and η:

αν = ι0ηSym(ψ)µ = ι0ψηµ = 1.

Diff(α)ν = 1: Here we have:

Diff(α)ν = Sym(

∞⊕
n=0

α)ν = Sym(

∞⊕
n=0

α)Sym(ψ)µ

= Sym((
∞⊕
n=0

α)ψ)µ = Sym(η)µ = 1

where the equallity (
∞⊕
n=0

α)ψ = η is used in the penultimate step which we must now establish.

Notice, using the linear rule [d.3], the following identity holds:

ηD = ηd(1⊗ φ)d◦ = (u⊗ 1)(1⊗ φ)d◦ = φ(u⊗ 1)d◦ = φη

This allows us to observe that

ιk(
∞⊕
n=0

α)ψ = αιkψ = αDk = ι0ηDk = ι0φ
kη = ιkη

so that (
∞⊕
n=0

α)ψ = η as desired.

2

Proposition 8.5 (Diff, ν, α,∇, u,∆, e) is an additive bialgebra modality.

Proof: First observe that ν is an algebra morphism as both Sym(ψ) and µ are algebra morphisms.
To establish that the modality is an additive bialgebra modality we exhibit the Seely isomor-

phisms. Since Sym has Seely isomorphisms it follows that:

Diff(0) = Sym(

∞⊕
n=0

0) = Sym(0) ∼= R

32

Sym(

∞⊕
n=0

(M ×N)) ∼= Sym(

∞⊕
n=0

M ×
∞⊕
n=0

N) ∼= Sym(

∞⊕
n=0

M)⊗ Sym(

∞⊕
n=0

N)

2

We now set about proving that this modality does not admit a deriving transformation. This
is accomplished by proving that if there is a deriving transformation, then the ring R over which
the modules are taken must be trivial: that is in R we must have 1 = 0. More precisely we prove
that 1M⊗M = −σ : M ⊗M −→M ⊗M , however, by substituting R+R for M this gives the matrix
equality 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =


−1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 −1


but this then immediately gives.

0 =
(

0 1 0 0
)

0
0
−1
0

 =
(

0 1 0 0
)

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0
0
−1
0



=
(

0 1 0 0
)

−1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 −1




0
0
−1
0

 = 1

Theorem 8.6 For any category of modules over a non-trivial commutative ring the free differential
algebra modality, Diff, does not admit a deriving transformation.

Proof: Suppose then that there is a natural transformation b : Diff(M) −→ Diff(M) ⊗M which
is a deriving transformation. Then for each R-module M , the Leibniz rule implies that b is a

Sym(
∞⊕
n=0

M)-derivation, and therefore by the universality of the deriving transformation of Sym

(see [2, 7] for more details), there exists a unique Sym(
∞⊕
n=0

M)-module homomorphism f] making

Sym(
∞⊕
n=0

M)

b
))

d // Sym(
∞⊕
n=0

M)⊗
∞⊕
n=0

M

f]

��

Sym(
∞⊕
n=0

M)⊗M

commute. However, as f] is a morphism between free modules it is determined by a map

f :

∞⊕
n=0

M −→ Sym(

∞⊕
n=0

M)⊗M where f] = (1⊗ f)(∇⊗ 1).

33

Now both d and b are determined by derelictions, respectively d̂ := d(e ⊗ 1) and b̂ = b(e ⊗ 1), as
they are on additive algebra modalities. Thus, setting f = f(e⊗ 1) we have:

b̂ = b(e⊗ 1) = df](e⊗ 1) = d(1⊗ f)(∇⊗ 1)(e⊗ 1) = d(e⊗ f(e⊗ 1)) = d̂f(e⊗ 1) = d̂f.

But then f] = 1⊗ f as d(1⊗ f) = ∆(1⊗ (d̂ f)) = ∆(1⊗ b̂) = b. Thus we have now shown that

Sym(
∞⊕
n=0

M)

b
))

d // Sym(
∞⊕
n=0

M)⊗
∞⊕
n=0

M

1⊗f
��

Sym(
∞⊕
n=0

M)⊗M

commutes. Furthermore, f is a natural transformation as if g : M −→ N then, using that d is

natural and b is assumed to be a natural, both
∞⊕
n=0

gf and fg provide the unique mediating maps

between d and Diff(g)b.

Consider the map π1 :
∞⊕
n=0

An −→ A1 defined as π1 = 〈δk,1〉, that is, the unique map which

makes the following diagram commute for each injection map:

Ak
ιk //

δk,1
&&

∞⊕
n=0

Ak

π1
��
A1

where δ1,1 = 1 and δk,1 = 0 for k 6= 1. Because b satisfied the chain rule, νb = b(ν ⊗ b)(∇⊗ 1), the
following equality of natural transormations, obtained by sandwiching the chain rule between the
same maps, must also hold:

(α⊗ α)∇ι1ηνb((επ1)⊗ 1) = (α⊗ α)∇ι1ηb(ν ⊗ b)(∇⊗ 1)(ε⊗ 1)(π1 ⊗ 1)

However, we will show that this forces 1 = −σ : M ⊗M −→ M ⊗M which forces the module
category to be trivial. Preliminary to this we note the following useful identities:

α = ι0η

αD = ι0ηD = ι0φη = ι1η

ι0f = ι0ηd̂f = αb̂ = 1

(η ⊗ η)∇d = (η ⊗ η)(1⊗ d)(∇⊗ 1) + (η ⊗ η)(d⊗ 1)(1⊗ σ)(∇⊗ 1)

= (η ⊗ u⊗ 1)(∇⊗ 1) + (u⊗ 1⊗ η)(1⊗ σ)(∇⊗ 1)

= η ⊗ 1 + σ(η ⊗ 1)

Now explicitly calculating out the first map above we have:

(α⊗ α)∇ι1ηνb(επ1 ⊗ 1)

34

= (α⊗ α)∇ι1ηSym(ψ)µd(επ1 ⊗ f)

= (α⊗ α)∇ι1ψηµd(επ1 ⊗ f)

= (α⊗ α)∇Dd(επ1 ⊗ f)

= ((α⊗ αD)∇+ (αD⊗ α)∇))d(επ1 ⊗ f)

= ((ι0η ⊗ ι1η)∇+ (ι1η ⊗ ι0η)∇)d(επ1 ⊗ f)

= (ι0 ⊗ ι1 + ι1 ⊗ ι0)(η ⊗ η)∇d(επ1 ⊗ f)

= (ι0 ⊗ ι1 + ι1 ⊗ ι0)((η ⊗ 1) + σ(η ⊗ 1))(επ1 ⊗ f)

= (ι0 ⊗ ι1 + ι1 ⊗ ι0)((π1 ⊗ f) + σ(π1 ⊗ f))

= (ι0 ⊗ ι1)(π1 ⊗ f) + (ι1 ⊗ ι0)(π1 ⊗ f)

+ σ(ι1 ⊗ ι0)(π1 ⊗ f) + σ(ι0 ⊗ ι1)(π1 ⊗ f)

= 0 + 1⊗ 1 + σ + 0

= 1⊗ 1 + σ

while for the second map:

(α⊗ α)∇ι1ηb(ν ⊗ b)(∇⊗ 1)(επ1 ⊗ 1)

= (α⊗ α)∇ι1ηd(ν ⊗ fb)(∇⊗ 1)(επ1 ⊗ 1)

= (α⊗ α)∇ι1(u⊗ 1)(ν ⊗ fb)(∇⊗ 1)(επ1 ⊗ 1)

= (α⊗ α)∇ι1(uν ⊗ fb)(∇⊗ 1)(επ1 ⊗ 1)

= (α⊗ α)∇ι1(u⊗ fb)(∇⊗ 1)(επ1 ⊗ 1)

= (α⊗ α)∇ι1fb((u⊗ 1)∇⊗ 1)(επ1 ⊗ 1)

= (α⊗ α)∇ι1fb(επ1 ⊗ 1)

= (α⊗ α)∇ι1

 ∞⊕
n=0

b(επ1 ⊗ 1)

 f

= (α⊗ α)∇b(επ1 ⊗ 1)ι1f

= (ι0 ⊗ ι0)(η ⊗ η)∇d(επ1 ⊗ f)ι1f

= (ι0 ⊗ ι0)(η ⊗ 1 + σ(η ⊗ 1))(επ1 ⊗ ff)ι1f

= (ι0 ⊗ ι0)(π1 ⊗ f)ι1f + σ(ι0 ⊗ ι0)(π1 ⊗ f)ι1f

= 0 + 0 = 0

Therefore, if b satisfied the chain rule, this would imply that 1M⊗M = −σ for every R-module M
which only happens when R is the trivial ring as discussed above. Therefore, Diff does not have a
deriving transformation when the ring is non-trivial. 2

By way of contrast Rota-Baxter algebras – an algebraic abstraction of integration – whose
algebra modality is not additive always gives a differential category:

Example 8.7 Let R be a commutative ring. A (commutative) Rota-Baxter algebra (of weight
0) [11] over R is a pair (A,P) consisting of a commutative R-algebra A and an R-linear map P : A
−→ A such that P satisfies the Rota-Baxter equation, that is, the following equality holds:

P(a)P(b) = P(aP(b)) + P(P(a)b) ∀ab,∈ A

35

The map P is called a Rota-Baxter operator (we refer the reader to [11] for more details on
Rota-Baxter algebras). It turns out that there is a left adjoint to the forgetful functor between
the category of Rota-Baxter algebras, CRBAR, and the category of commutative algebras over R,
CALGR. We quickly review the construction of the free Rota-Baxter algebra over an algebra (for
more details see chapter 3 of [11]): let M be an R-module and consider the shuffle algebra, Sh(M),
over M which is defined as follows: Sh(M) = R⊕M⊕(M⊗M)⊕(M⊗M⊗M)⊕ . . . =

⊕
n∈NM

⊗n

where M⊗
0

= R and where the multiplication �, called the shuffle product [11], is defined
inductively on pure tensors w = a⊗ w′ and v = b⊗ v′ as follows:

w� v = a⊗ (w′ � v) + b⊗ (w� v′)

which we then extend by linearity (notice that the unit for the shuffle product is 1R). Denote
the multiplication and unit maps of the shuffle algebra by H : Sh(M) ⊗ Sh(M) −→ Sh(M) and
v : R −→ Sh(M) respectively. The free commutative Rota-Baxter over a commutative R-algebra
A, RB(A), is then the tensor product of shuffle algebra and A itself: RB(A) = Sh(A) ⊗ A. The
Rota-Baxter operator P : RB(A) −→ RB(A) is defined on pure tensors as follows:

w ⊗ b =

{
(w · b)⊗ 1A if w ∈ R
(w ⊗ b)⊗ 1A otherwise

which we then extend by linearity. The induced functor RB : CALGR −→ CRBAR is the left adjoint
to the forgetful functor U : CRBAR −→ CALGR:

CALGR
RB //

CRBAR⊥
U

oo

(for more details on this adjunction and monad see [19]) where for an algebra A, the unit of the
adjunction is defined as v⊗ 1 : A −→ Sh(A)⊗A, while for a Rota-Baxter algebra (B,Q), the counit
ω : Sh(B)⊗B −→ B is defined on pure tensors as

ωB((b1 ⊗ ...⊗ bn)⊗ b) = Q(. . .Q(Q(b1)b2) . . . bn)b

which we then extend by linearity. To obtain an algebra modality on MODR, we compose the free
Rota-Baxter algebra adjunction and the free symmetric algebra adjunction:

MODR

Sym //
CALGR⊥

U
oo

RB //
CRBAR⊥

U
oo

The monad induced by the resulting adjunction between MODR and CRBAR is clearly an algebra
modality by construction again. After some simplifications, the unit and multiplication of the
monad are represented in string diagrams respectively as:

ηv

ω

µ

⊗
εSh(ε)

36

While the unit and multiplication of the algebra structure are represented in string diagrams re-
spectively as:

uv

H ∇

However this algebra modality, RB(Sym(M)), does not have the Seely isomorphism as Sh is not a
strong monoidal functor (i.e. Sh(A⊗B) � Sh(A)⊗ Sh(B)):

RB(Sym(M ×N)) ∼= RB(Sym(M)⊗ Sym(N))

= Sh(Sym(M)⊗ Sym(N))⊗ Sym(M)⊗ Sym(N)

� Sh(Sym(M))⊗ Sh(Sym(N))⊗ Sym(M)⊗ Sym(N)
∼= Sh(Sym(M))⊗ Sym(M)⊗ Sh(Sym(N))⊗ Sym(N)

= RB(Sym(M))⊗ RB(Sym(N))

Therefore, this algebra modality is not a bialgebra modality or a comonoidal algebra modality. We
should mention that while it is true that the shuffle algebra is a bialgebra, its comultiplication is
not cocommutative [11]. However, we may still use the free Rota-Baxter adjunction to obtain a
differential category structure on MODR. The deriving transformation is defined as

1⊗ d : Sh(Sym(M))⊗ Sym(M) −→ Sh(Sym(M))⊗ Sym(M)⊗M

===

where recall that d is the deriving transformation of Sym (if this looks upside-down, recall that we
are working in a co-differential category). It may seem trivial that this is a deriving transformation,
but in fact proving the chain rule is quite non-trivial! We will need the following lemma to prove
the chain rule:

Lemma 8.8 Let R be a commutative ring.

(i) For every commutative R-algebra A, (1⊗ ♦)ω = (ω ⊗ 1⊗ 1)♦

H

ω

∇

=
H ∇

ω

where ♦ is the multiplication on RB(A).

(ii) For every R-module M , ω(1⊗ d) = (1⊗ 1⊗ d)(ω ⊗ 1)

===

ω

=

===

ω

37

Proof: i): Let A be a commutative R-algebra. It suffices to prove this equality on pure tensors.
Consider the following pure tensor of Sh(Sh(A)⊗A)⊗ Sh(A)⊗A:

([A1 ⊗ a1]⊗ . . .⊗ [An ⊗ an])⊗A⊗ a ∈ Sh(Sh(A)⊗A)⊗ Sh(A)⊗A

where A,A1 . . . An ∈ Sh(A) and a, a1 . . . , an ∈ A. By definition of ωA, we obtain that:

ωA(([A1 ⊗ a1]⊗ . . .⊗ [An ⊗ an])⊗A⊗ a)

= P(P(. . .P(P(A1 ⊗ a1)♦(A2 ⊗ a2)) . . .♦(An ⊗ an)))♦(A⊗ a)

= (P(. . .P(P(A1 ⊗ a1)♦(A2 ⊗ a2)) . . .♦(An ⊗ an)))⊗ 1)♦(A⊗ a)

= (P(. . .P(P(A1 ⊗ a1)♦(A2 ⊗ a2)) . . .♦(An ⊗ an))�A)⊗ a

Notice that a is unaffected by ω. Now let B ⊗ b ∈ Sh(A)⊗A. Then we have the following equality
by associativity of the shuffle product:

= ωA(([A1 ⊗ a1]⊗ . . .⊗ [An ⊗ an])⊗ ((A⊗ a)♦(B ⊗ b)))
= ωA(([A1 ⊗ a1]⊗ . . .⊗ [An ⊗ an])⊗ ((A�B)⊗ (ab)))

= (P(. . .P(P(A1 ⊗ a1)♦(A2 ⊗ a2)) . . .♦(An ⊗ an))� (A�B))⊗ (ab)

= ((P(. . .P(P(A1 ⊗ a1)♦(A2 ⊗ a2)) . . .♦(An ⊗ an))�A)�B)⊗ (ab)

= ((P(. . .P(P(A1 ⊗ a1)♦(A2 ⊗ a2)) . . .♦(An ⊗ an))�A)⊗ a)♦(B ⊗ b)
= ωA(([A1 ⊗ a1]⊗ . . .⊗ [An ⊗ an])⊗A⊗ a)♦(B ⊗ b)

ii): Let M be an R-module. It suffices to prove this equality on pure tensors. Consider the following
pure tensor of Sh(Sh(Sym(M))⊗ Sym(M))⊗ Sh(Sym(M))⊗ Sym(M):

([W1 ⊗w1]⊗ . . .⊗ [Wn ⊗wn])⊗W0 ⊗w0 ∈ Sh(Sh(Sym(M))⊗ Sym(M))⊗ Sh(Sym(M))⊗ Sym(M)

where W,W1, . . .Wn ∈ Sh(Sym(M)) and w,w1 . . . , wn ∈ Sym(M). By definition of ωSym(M), we
obtain that:

ωW (([W1 ⊗ w1]⊗ . . .⊗ [Wn ⊗ wn])⊗W ⊗ w)

= P(P(. . .P(P(W1 ⊗ w1)♦(W2 ⊗ w2)) . . .♦(Wn ⊗ wn)))♦(W ⊗ w)

= (P(. . .P(P(W1 ⊗ w1)♦(W2 ⊗ w2)) . . .♦(Wn ⊗ wn)))⊗ 1)♦(W ⊗ w)

= (P(. . .P(P(W1 ⊗ w1)♦(W2 ⊗ w2)) . . .♦(Wn ⊗ wn))�W)⊗ w

Notice that w is unaffected by ω. Let w = m1 ⊗ . . .⊗mk, mi ∈M , then we have that:

dM (w) =

k∑
i=1

(m1 ⊗ . . .mi−1 ⊗mi+1 ⊗ . . .mk)⊗mi

Then we obtain the following equality:

(1⊗ dM)(ωSym(M)(([W1 ⊗ w1]⊗ . . .⊗ [Wn ⊗ wn])⊗W ⊗ w))

= (1⊗ dM)((P(. . .P(P(W1 ⊗ w1)♦(W2 ⊗ w2)) . . .♦(Wn ⊗ wn))�W)⊗ w)

= (P(. . .P(P(W1 ⊗ w1)♦(W2 ⊗ w2)) . . .♦(Wn ⊗ wn))�W)⊗ dM (w)

38

= (P(. . .P(P(W1 ⊗ w1)♦(W2 ⊗ w2)) . . .♦(Wn ⊗ wn))�W)

⊗ (

k∑
i=1

(m1 ⊗ . . .mi−1 ⊗mi+1 ⊗ . . .mk)⊗mi)

=
k∑
i=1

(P(. . .P(P(W1 ⊗ w1)♦(W2 ⊗ w2)) . . .♦(Wn ⊗ wn))�W)

⊗ (m1 ⊗ . . .mi−1 ⊗mi+1 ⊗ . . .mk)⊗mi

=
k∑
i=1

(ωSym(M) ⊗ 1)(([W1 ⊗ w1]⊗ . . .⊗ [Wn ⊗ wn])⊗W

⊗ (m1 ⊗ . . .mi−1 ⊗mi+1 ⊗ . . .mk))⊗mi

= (ωSym(M) ⊗ 1)(([W1 ⊗ w1]⊗ . . .⊗ [Wn ⊗ wn])⊗W

⊗ (

k∑
i=1

(m1 ⊗ . . .mi−1 ⊗mi+1 ⊗ . . .mk)⊗mi))

= (ωSym(M) ⊗ 1)(([W1 ⊗ w1]⊗ . . .⊗ [Wn ⊗ wn])⊗W ⊗ dM (w))

2

Proposition 8.9 For the free Rota-Baxter monad, 1⊗ d is a deriving transformation.

Proof: By construction 1⊗ d is a natural transformation. We need to show [d.2] to [d.5] (recall
that [d.1] is redundant). The linear rule [d.3], the Leibniz rule [d.2] and the interchange rule [d.5]
are straightforward but the chain rule [d.4] requires some work:
[d.2]: Here we use the Leibniz rule [d.2]:

H ∇

===

=
H

===

∇
+

H

===

∆

[d.3]: Here we use the linear rule [d.3]:

η

===v =
uv

[d.4]: Here we use the counit law, Lemma 8.8, the chain rule [d.4], the monoidal rule [d.m], that

39

ε is an algebra morphism and the triangle identities of the free symmetric algebra adjunction:

ω

Sh(ε) ε µ

⊗

===

=

ω

Sh(ε) ε µ

⊗

=== =

ω

Sh(ε) ε

⊗

∇

µ

===

=== =

ω

Sh(ε)

ε

∇

µ

===

η

⊗⊗

∇

===

=

ω

Sh(ε)

H

∇

µ
===

η

⊗⊗
===

ε

ε

=

ω

Sh(ε)

H ∇

µ ===

⊗⊗
===

ε

=

ω

Sh(ε)

H ∇

µ ===

⊗⊗
===

ε

[d.5]: Here we use the interchange rule [d.5]:

===

===

=

===

===

2

To obtain examples of non-additive bialgebra modalities, we need simply apply the construction
for Section 6 to our examples of additive bialgebra modalities.

Example 8.10 The free symmetric algebra modality induces a non-additive bialgebra modality
on MODR which has a deriving transformation.

Example 8.11 The free differential algebra modality induces a non-additive bialgebra modality
on MODR which does not have a deriving transformation (since if it did, then DIFF would have
one).

Finally to obtain a coalgebra modality which is not a bialgebra modality and does not have a
deriving transformation, we look towards differential Rota-Baxter algebras.

Example 8.12 Let R be a commutative ring. A (commutative) differential Rota-Baxter al-
gebra (of weight 0) [12] over R is a triple (A,D,P) consisting of a differential algebra (A,D) and
a Rota-Baxter algebra (A,P) such that PD = 1A. It turns out that the free Rota-Baxter algebra
over a differential algebra is also its free differential Rota-Baxter algebra, and therefore inducing

40

the following adjunction between the category of differential algebras, CDAR, and the category of
differential Rota-Baxter algebras, CDRBAR:

CDAR
RB //

CDRBAR⊥
U

oo

The full construction can be found in [12]. Once again, to obtain an algebra modality we compose
this adjunction with the free differential algebra adjunction:

MODR

DIFF //
CDAR⊥

U
oo

RB //
CDRBAR⊥

U
oo

This algebra modality is not comonoidal for the same reasons as the free Rota-Baxter algebra, and
is not a differential category failing the chain rule like the free differential algebra.

9 Conclusion

There is a tendency to assume that the only important coalgebra modalities are those which arise
through linear logic: that is those which are monoidal coalgebra modalities (or equivalently additive
coalgebra modalities – in the sense of this paper). Certainly, it is true that it is the monoidal
coalgebra modalities that have filled the lion’s share of the literature. Of course, this does not
mean that their relatives, the mere coalgebra modalities, are not worthy of scientific attention –
indeed, we believe that they have been wrongly overlooked. Thus, one objective of this paper is to
reemphasize the important of these mere coalgebra modalities and to provide a stock of examples.

Of course it would have been very much simpler if all these observations had been made in [3]
– the original paper. Unfortunately, they were not. Marcelo Fiore’s paper [10] made us realize
that there was much more to say. In particular, the relation between deriving transformations and
coderelictions had not been fully developed. Here we have revisited this relation and, in addition,
filled in some of the gaps left in the original paper. That there will be yet more to say we are sure!

Significantly, it is not that the notion of differentiation varies but rather, as the setting varies,
significantly different presentations of the differential become possible. Philosophically this is cer-
tainly how things should be ... and apparently it is how they are!

References

[1] Bierman, G.M.: What is a categorical model of intuitionistic linear logic? In: International
Conference on Typed Lambda Calculi and Applications, pp. 78–93. Springer (1995)

[2] Blute, R.F., Cockett, J.R.B., Porter, T., Seely, R.A.G.: Kähler categories. Cahiers de Topologie
et Géométrie Différentielle Catégoriques 52(4), 253–268 (2011)

[3] Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Differential categories. Mathematical structures
in computer science 16(06), 1049–1083 (2006)

[4] Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Cartesian differential categories. Theory and
Applications of Categories 22(23), 622–672 (2009)

41

[5] Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Cartesian differential storage categories. Theory
and Applications of Categories 30(18), 620–686 (2015)

[6] Blute, R.F., Ehrhard, T., Tasson, C.: A convenient differential category. Cahiers de Top. et
Géom Diff LIII, 211–232 (2012)

[7] Blute, R.F., Lucyshyn-Wright, R.B.B., O’Neill, K.: Derivations in codifferential categories.
Cahiers de Topologie et Géométrie Différentielle Catégoriques 57, 243–280 (2016)

[8] Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theoretical Computer Science
309(1), 1–41 (2003)

[9] Ehrhard, T., Regnier, L.: Differential interaction nets. Theoretical Computer Science 364(2),
166–195 (2006)

[10] Fiore, M.P.: Differential structure in models of multiplicative biadditive intuitionistic linear
logic. In: International Conference on Typed Lambda Calculi and Applications, pp. 163–177.
Springer (2007)

[11] Guo, L.: An introduction to Rota-Baxter algebra, vol. 2. International Press Somerville (2012)

[12] Guo, L., Keigher, W.: On differential rota–baxter algebras. Journal of Pure and Applied
Algebra 212(3), 522–540 (2008)

[13] Joyal, A., Street, R.: The geometry of tensor calculus, i. Advances in Mathematics 88(1),
55–112 (1991)

[14] Lang, S.: Algebra, revised 3rd ed. Graduate Texts in Mathematics 211 (2002)

[15] Mac Lane, S.: Categories for the working mathematician. Springer-Verlag, New York, Berlin,
Heidelberg (1971, revised 2013)

[16] Mellies, P.A.: Categorical models of linear logic revisited (2003)

[17] Seely, R.A.G.: Linear logic,*-autonomous categories and cofree coalgebras, vol. 92. American
Mathematical Society (1989)

[18] Selinger, P.: A survey of graphical languages for monoidal categories. In: New structures for
physics, pp. 289–355. Springer (2010)

[19] Zhang, S., Guo, L., Keigher, W.: Monads and distributive laws for rota–baxter and differential
algebras. Advances in Applied Mathematics 72, 139–165 (2016)

42

A Monoidal Coalgebra Modalities are Additive Bialgebra Modal-
ities

In this appendix we provide the complete proof that the monoidal coalgebra modality of an additive
linear category is an additive bialgebra modality. Recall the definitions of ∇ and u in their string
diagram representations:

∇ :=

⊗δ δ

e eεε +

u

:=

m

0

In certain parts of the following proofs, for space and simplification, define φ = e⊗ ε+ ε⊗ e.
We first check that ∇ and u are indeed natural.

Lemma A.1 ∇ and u are natural transformations.

Proof: By construction, ∇ is a natural transformation since it is the composition of natural
transformation. The unit u on the other hand is not automatically a natural transformation by
construction, since mK is a map and not a natural transformations. Let f : A −→ B, then we have
the following equality:

uA!(f) = mK !(0)!(f) = mK !(0f) = mK !(0) = uB

Therefore, u is also a natural transformation. 2

Next we check that we have a commutative algebra.

Lemma A.2 For each object A, (!A,∇, u) is a commutative monoid.

Proof: We need to check associativity, commutativity and the unit laws. For associativity of the
multiplication we have:

⊗ δδ

⊗ δδ

φ

φ

=

⊗ δ!(φ)

⊗ δδ

δ

φ

=

δ!(φ)

δ

φ

⊗

δ

⊗

⊗

δδ

=

δ!(φ)

δ

φ

⊗

δ

⊗

⊗

δδ

=

δ
φ

φ

⊗

⊗ δδ

⊗δ δ

=

δ

φ

⊗
⊗ δδ

⊗ δδ

φ

43

=

δ

φ

⊗
⊗δ δ

⊗δ δ

φ

=

δ
φ

φ

⊗

⊗δ δ

⊗ δδ

=

δ !(φ)

δ

φ

⊗

δ

⊗

⊗

δ δ

=

δ !(φ)

δ

φ

⊗

δ

⊗

⊗

δ δ

=
δ !(φ)

δ

φ

δ

⊗

δ⊗

=

⊗δ δ

⊗δ δ

φ

φ

Now to show that the multiplication is commutative:

δδ

φ

⊗
=

δ δ

φ

⊗
=

δδ

φ

⊗

Having proved commutativity, we only need to prove the left unit law of the multiplication:

⊗δ δ

e eεε +

0

m

=

⊗!(0) δ

e eεε +

δ

m

=

⊗!(0) δ

e eεε +

m

m

=

⊗
m δ

e

e

ε

ε
+

m

0 0

=

⊗
m δ

e e

0

ε
+

m

ε

=

⊗
m δ

e ε
+

m

0

=

⊗
m

δ

e

m

ε

=
δ

ε
=

2

Next we check that we have a bialgebra:

Lemma A.3 For each object A, (!A,∇, u,∆, e) is a (commutative) bialgebra.

Proof: We need to check the four bialgebra compatibility relations:

44

1. Multiplication and comultiplication compatibility:

δδ

φ

⊗

∆

=

δδ ⊗
∆

φφ

=

δδ

φφ

⊗
∆

⊗
∆

=

∆ ∆

φ φ

δ δ⊗ δ δ⊗

2. Multiplication and counit compatibility:

φ

e

δ δ⊗
=

e

δ δ⊗ =
e

δ δ

e

=
e e

3. Comultiplication and unit compatibility:

∆

0

m

=
∆

m

00

= 0

m

0

m

4. Counit and unit compatibility:

0

e

m

=
e

m

=

2

Proposition A.4 The monoidal coalgebra modality of an additive linear category is an additive
bialgebra modality.

Proof: We first prove that we have a bialgebra modality by proving the compatibility of ε and ∇:

δ δ⊗
φ

ε

=

δ δ⊗
ε

φ

=

δ δ

φ

εε
= φ = eε + e ε

Finally, we show that the bialgebra modality is in fact additive by proving the compatibility with
the additive structure:

45

1. !(0) = eu:

u

e

=

e

0

m

=

δ

0

e
=

δ

0 =

δ

0

ε
= 0

2. !(f + g) = ∆(!(f)⊗ !(g))∇:

∆

gf

∇

=

∆

gf

⊗δ δ

εe eε+

=

∆

δδ ⊗

εe eε

+

gf gf

=

g

e e

f

δ

+
ε ε

∆ ∆

=

δ

ε

f + g

= f + g

2

B Additive Bialgebra Modalities are Monoidal Coalgebra Modal-
ities

In this appendix we prove the converse of the previous one: that an additive bialgebra modality
is a monoidal coalgebra modality. Recall the definitions of m⊗ and mK in their string diagram
representations:

⊗
:=

δ

u

ε

ε e

δ

u

∇

δ

∆

ε

e ε

m

:=
e

u

δ

By construction we have that m⊗ is natural.

Lemma B.1 m⊗ is a natural transformation.

46

For multiple parts of the following proofs, we will need the following useful identity:

u

∇

e εeε

∆

u

=

u

e εeε

u

∇

∆

∇

∆

=
u

e
ε

u

∇

∆

∇

∆

e
ε

u
e

ε

e
u

ε

=

∇

∆

∇

∆

0ε ε0 =

∇

∆

∇

∆

ε ε
e e

u u
= ε ε

We first prove that we have a symmetric monoidal functor:

Lemma B.2 (!,m⊗,mK) is a symmetric monoidal functor.

Proof: To prove associativity of m⊗ we will need the following identities (which follow from the
above identity):

u

δ

∇

δ

ε

uu

δ

e

u

e

δ

+

ε

=

u

δ

u

∇

δ

δ

εε

∆

∇

u

e

u

e

δ

=

u

δ

u

∇

δ

εε

∆

∇

u

e

u

e

δ

δδ

=

δ

δ

∇

ε ε

δ

δ

uu

δ

=

∇

u u

δ

δδ

47

And similarly we have:

ε

u

e

e

u

ε

ε ε

ε

δ

+

ε

e

∆

δ

e

=

∆

ε εe e

ε

Now we can prove associativity. Consider the following series of equalities:

u

δ

∇

u u

δ

u u

∇

δ

u

e

∆

e εε e

∆

eee ε

ε ε ε

δ

=

u

δ

∇

δ

u

u

∇

δ

u

e

∆

e εε e

∆

eee ε

ε ε ε

δ

u

=

u

δ

∇

δ

u

u

∇

δ

u

e

∆

e εε e

∆

eee ε

ε ε ε

δ

u

u

e

u

ε

δ

ε

δ

e

∇

∆

48

=

u

δ

∇

δ

u

u

δ

u

e

∆

e εε e

∆

eee ε

ε ε ε

δ

u

+

u

e

u

ε

δ

ε

δ

e

∇

=

u

δ

∇

δ

u

δ

e

∆

e εε e

∆

eee ε

ε ε ε

δ

uu

δ δ

∇

e

u uu

+
e ε

ε

=

u

δ

∇

δ

u

δ

∆

∆

ε ε ε

δ

uu

δ δ

∇

ε eε

ε

e

uu

+
ee

u

e

ε

e eε

ε

e

uu

+
ee

u

ε

ε

e e εe

ε

e

uu

+
ee

u

e

ε

εe

=

u

δ

∇

δ

u

δ

∆

∆

ε ε ε

δ

uu

δ δ

∇

ε

+
e

e

ε

e

+
e

ε

ε

ε

ε

+

e

0 0 0

49

=

u

δ

∇

δ

u

δ

ε ε ε

δ

uu

δ δ

∇

ε e ε

∆

e

ε e ε

∆

e

ε

=

∇

u

e

δ

u

e

δ

ε

δ

ε

∆

ε ε

u

δ

u

δ

∇

ε

ε ε

∆

ε ee

δ

eε

u

ε

δ

e

u

+

=

∇

u

e

δ

u

e

δ

ε

δ

ε

∆

ε ε

u

δ

u

ε e

δ

δ

ε

δ

+

e

uu

∇

ε

ε ε

∆

ε ee

=

ε

∇

u

ε

e

e

δ

u

e

e

δ

∆

ε

δ

ε

ε

ε

δ

∆

ε ε

δ δ

u u

∇

=

u u

δ

δ

δ

∇

e ε

ε

u

∆

e

ε

δ

ε

δ

δ

∇

ε

∆

ee ε

ε ε

∆

ε e εe

εε

u

=

u u

δ

δ

δ

∇

e ε

ε

u u

∆

e

ε

δ

ε

δ

δ

∇

ε

∆

ee ε

ε ε

=

e ε

ε

u u

∆

e

ε

δ

ε

δ

δ

∇

e ε

ε

u u

∆

e

ε

δ

ε

δ

δ

∇

The first circuit is symmetric by associativity of the bialgebra and the last circuit is the left
associativity of m⊗. Therefore reversing the sequence of equalities by symmetry gives the right
associativity of m⊗. This proves the associativity coherence for m⊗.

Next we prove the unit laws for m⊗ and mK (we only prove the left unit identity, as the proof

50

for the right unit identity is similar):

ε

u

e

δ

ε

δ

∆

e

u

∇

ε

δ

ε

e

δ

u

=

ε

u

e

δ

ε

δ

∆

e

u

∆

∇

ε

δ

ε

δ

u

e

e

=

ε

u

e

δ

ε

δ

∆

e

u

∆

∇

ε

δ

ε

δ

e

0

=

ε

u

e

δ

ε

δ

∆

e

u

∆

∇

ε

δ

ε

0

e

δ

=

ε

u

e

δ

ε

∆

e

u

∆

∇

ε

δ

ε

e

δ

=

ε

u

e

δ

ε

∆

e

u

ε

δ

ε

e

δ

+

=

ε

e

δ

ε

∆

eε

ε

δ

u +
e

δ

u

=

ε

δ

∆

ε

δ

u + u

e

δ

ε

e

ε

e

+

u u

e

e

δ

ε

e

ε

=

ε

∆

ε

δ

ε

δ

e

=

ε

∆

ε

δ

ε

e

δ δ
=

∆

δ

e ε

=
δ

ε
=

51

Now we prove that m⊗ preserves the symmetry:

u

∇

e ε

δδ

ε

δ

eε

∆

ε

u

=

u

∇

e ε

δ δ

ε

δ

eε

∆

ε

u

=

u

∇

e ε

δδ

ε

δ

eε

∆

ε

u

=

u

∇

e

δδ

ε

δ

ε

∆

ε

u

εe

=

u

∇

e

δδ

ε

δ

ε

∆

ε

u

εe

=

u

∇

e

δδ

ε

δ

ε

∆

ε

u

εe

=

e

ε

δ

ε

∆

ε

εe

u u

δ

∇

δ

=

u

∇

e ε

δδ

ε

δ

eε

∆

ε

u

=

u

∇

eε

δδ

ε

δ

e ε

∆

ε

u

=

u

∇

e ε

δδ

ε

δ

eε

∆

ε

u

2

Next we prove that we have a symmetric monoidal comonad:

Lemma B.3 (!, δ, ε,m⊗,mK) is a symmetric monoidal comonad.

52

Proof: We need to show that δ and ε are monoidal natural transformation. To show the compat-
ibility relations with m⊗, we will need some useful identities (for which the proofs are very similar
to the identity used for the associativity coherence of m⊗):

u

δ

∇

δ

ε

uu

δ

e

u

e

δ

+

δ

ε

=

∇

u u

δ δ

δδ

δ

δ

ε

uu

e e

+

δ

ε

ε e ε

ε

∆

e

ε

=

∆

εeeε

δ

ε

uu

e e+ ε

ε e ε

ε

∆

e

ε

= ε e ε

ε

∆

e

ε

53

Now we show the compatibility between δ and m⊗:

εε

u

∇

u

∆

δ

ε e

δ δ

εe

εε

δ

u

δ

∇

u

∆

δ

ε e

δ δ

εe

=

ε

εe

ε

e

u

ε ε

∆

ε

∇

δ

δ

ε

δ

u

ε

∆

δ

e

e

u

δ

u

ε e

δ

δ

ε

δ

+

e

uu

∇

δ

=

ε

εe

ε

e

u

ε ε

∆

ε

∇

δ

δ

ε

δ

u

ε

∆

δ

e

e

u

δ

u

δ

δ

∇

uδ

e

δ

e ε

u

ε

+

=

ε

εe

ε

e

u

ε ε

∆

ε

∇

δ

δ

ε

δ

u

ε

∆

δ

e

e

u

δ

u

δ

δ

∇

uδ

e

δ

e ε

u

ε

+

=

ε

εe

ε

u

∆

∇

δ

ε

δ

u

δ

e

u

δ

u

δ

δ

∇

ε εe

∆

e

=

ε

εe

ε

∆

δ

ε e

u

δ

u

δ

δ

∇

u

∇

δ

ε e ε

∆

u

e

=

ε

εe

ε

∆

δ

ε e

u

δ

u

δ

δ

∇

δ

ε e

+

εe

uu

=

ε

εe

ε

∆

δ

ε e

u

δ

u

δ

δ

∇

δ

u

+

ε e ε

u

e

54

=

ε

εe

ε

∆

δ

ε e

u

δ

u

δ

δ

∇

δ

u

+ε e ε

u

e

=

ε

εe

ε

∆

δ

ε e

u

δ

u

δ

δ

∇

δ

u
+

ε e ε

u

e

=

u

∇

u

e e

∆

δ

ε

ε

δ

ε

ε

δ

δ

δ

δ

ε ε

=

δ

u

ε

ε e

δ

u

∇

δ

∆

ε

e ε

δ

δ

ε

δ

εε ε

=

δ

u

ε

ε e

δ

u

∇

δ

∆

ε

e ε

δ =

εε

u

∇

u

∆

δ

ε e

δ δ

εe

δ

Next we show the compatibility between δ and mK :

!(e)

δ

u

δ

u

e

=

!(e)

δ

!(0)

δ

u

=

!(e)

δ

δ

0

u

=

!(e)

δ

u

δ =

!(e)

δ

u

δ =

δ

δ

u

e

55

Now we show the compatibility between ε and m⊗:

u

∇

e ε

δδ

ε

δ

e

ε

ε

∆

ε

u

=

u

∇

e ε

δδ

ε

δ

eε

∆

ε

u

ε
=

u

∇

e ε

δδ

ε

eε

∆

ε

u

=

δ

ε

ε ε

δ

ε

= ε ε

Finally we show the compatibility between ε and mK :

ε

δ

u

e =

e

δ

u

ε
=

e

u

=

2

Finally we show that we have a monoidal coalgebra modality:

Proposition B.4 Every additive bialgebra modality is a monoidal coalgebra modality.

Proof: We begin by proving that ∆ is a monoidal transformation: first by proving m⊗ preserves
the comultiplication:

ε

δ

ε

∆

∇

ε

u

e

δ

∆

e

ε

δ

u

=

δ

∆

∇

u

δ

δ

u

ε e

εε

ε

∆

e ε e

εε

ε

∆

e

=

δ

∆

∇

u

δ

u

ε e

εε

ε

∆

e ε e

εε

ε

∆

e

δ δ

56

=

δ

u

δ

u

ε e

εε

ε

∆

e ε e

εε

ε

∆

e

δ δ

∆

∇ ∇

∆

=

∆ ∆

ε

δ

ε

∇

ε

u

e

δ

∆

e

ε

δ

u

ε

δ

ε

∇

ε

u

e

δ

∆

e

ε

δ

u

Next we show that mK preserves the comultiplication:

∆

δ

u

e = ∆

δ

u

e e

=

∆

u

δ δ

e e

=
δ

u

e

δ

u

e

Now we we prove that e is monoidal, by first proving that m⊗ preserves the counit:

u

∇

e ε

δδ

ε

δ

e

e

ε

∆

ε

u

=
u

∇

δδ

δ

e

u

= u

∇

δδ

e

u =
u

δδ

u

e e

= δδ

e e

=
e e

Next we show that mK preserves the counit:

e

δ

u

e
=

e

δ

u

=
e

m

=

57

Now we prove that ∆ is a !-coalgebra morphism:

u

∇

e ε

δδ

ε

δ

eε

∆

ε

u

∆

δ δ

=

u

∇

e ε

ε

δ

eε

∆

ε

u

∆

δ

δ

=

u

e ε

ε

δ

eε

∆

ε

u

δ

+

δ

=

e ε

ε

eε

∆

ε

uu
+

δ

δ

δ

=

ε

δ

e

∆

ε

δ

u u

+

ε

e
+

e

εε
e

uu

ε

δ

=

δ

∆

ε

δ

ε

εε

δ

=

∆

ε

δ

ε

εε

δ

δ

δ

δ
=

δ

∆

And finally we prove that e is a !-coalgebra morphism:

δ

u

e

e

= δ

e

0

= !(0)

e

δ

=
δ

e

2

58

	Introduction
	Conventions and the Graphical Calculus

	Differential Categories
	Bialgebra Modalities, Coderelictions and the -Rule
	Additive Bialgebra Modalities
	Additive Linear Categories and the Monoidal Rule
	Non-Additive Bialgebra Modalities
	Seely Isomorphisms and the Biproduct Completion
	Separating Examples
	Conclusion
	Monoidal Coalgebra Modalities are Additive Bialgebra Modalities
	Additive Bialgebra Modalities are Monoidal Coalgebra Modalities

