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Abstract. Concurrent Constraint Programming (CCP) has been the subject of
growing interest as the focus of a new paradigm for concurrent computation. Like
logic programming it claims close relations to logic. In fact CCP languages are
logics in a certain sense that we make precise in this paper. In recent work it
was shown that the denotational semantics of determinate concurrent constraint
programming languages forms a fibred categorical structure called a hyperdoctrine,
which is used as the basis of the categorical formulation of first-order logic. What
this shows is that the combinators of determinate CCP can be viewed as logical
connectives. In this paper we extend these ideas to the operational semantics of such
languages and thus make available similar analogies for a much broader variety of
languages including indeterminate CCP languages and concurrent block-structured
imperative languages.
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1. Introduction

Concurrent constraint programming (CCP) has emerged as an important
paradigm within the realm of asynchronous computation, with close ties to
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logic. Though logic and computation have always been related, the syn-
ergy between these two fields has been sharply increasing in the last decade.
For example the proofs-as-programs paradigm [Girard 1989], long exem-
plified for functional languages by the simply-typed lambda calculus, has
grown to include a whole family of typed lambda calculi, linear calculi and
more recently typed process calculi, through Abramsky’s work on “proofs-as-
processes” and linear realizability algebras [Abramsky 1994, 1993]. However
there is another relationship between logic and computation that one sees
in concurrent constraint programming, and logic programming in general:
not through the proofs-as-programs view but rather through programs as
“proof search” [Miller 1994].

In this paper we present yet another connection between logic and compu-
tation that may be summarized by the slogan “Concurrency is Logic”. In
the CCP framework we show that one can think of processes as formulas and
process combinators (e.g. hiding and parallel composition) as logical con-
nectives. This correlation is not merely vague analogy; rather, concurrent
constraint programs turn out to be instances of an abstract, fibred categor-
ical presentation of first-order logic via the structure called a hyperdoctrine
[Lawvere 1969]. It is one of the fundamental results in categorical logic that
hyperdoctrines correspond to, indeed are, logics with quantifiers. We shall
develop that viewpoint in detail for CCP.

In earlier work [Panangaden et al. 1993], we discovered this hyperdoctrinal
framework for determinate CCP modeled by closure operators. At the time,
it seemed this view was an interesting coincidence arising from the fact that
closure operators carry a logic-like structure. However, in the present paper
we show the phenomenon to be far more pervasive. First, we extend our
earlier hyperdoctrinal model to include the operational semantics of CCP
languages. This involves a detailed study of simulation, with particular
emphasis on how CCP programs interact with the environment. We then
show how to apply these results to the indeterminate case. In the final sec-
tions we indicate that key parts of our modelling extend to other concurrent
languages that are not remotely like concurrent constraint programming,.

Our slogan “Concurrency is Logic” involves three identifications, to be
contrasted with the realizability (or proofs-as-processes) viewpoint (for ex-
ample see Abramsky [1994]):

Concurrency is Logic| |Proofs-as-Processes‘
e Processes are Formulas e Types are Formulas
e Combinators are Connectives o Type Constructors are Connectives
¢ Simulations are Proofs e Processes are Proofs

Note the fundamental distinction: processes as formulas versus processes as
proofs. The basic dichotomy being reflected here is between logic program-
ming and functional programming. Logic programming arises from proof
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construction and concurrent constraint programming comes from this tradi-
tion, whereas computation in functional programming is identified as proof
normalization.

On the categorical side the inspiration for our work comes from the pro-
found insights of Lawvere [1969, 1970]. He realized that first-order logic
could be elegantly captured categorically, with quantifiers interpreted as
certain functors adjoint to substitution. This is to be contrasted with the
ad hoc algebraization of first-order logic achieved by Tarski and his follow-
ers [Henkin et al. 1971]. We present Lawvere’s ideas in expository form in
Section 3. Given this abstract categorical view one can pin down precisely
the relationship to logic as was done by Seely [1983]: there is a natural
bijection between Lawvere hyperdocrines and first-order logics, in a precise
sense familiar to categorical logicians [Lambek and Scott 1986]. Thus, these
categories are logics. This work extends to a host of important theories:
Martin-Lof type theories, polymorphic lambda calculi, linear logic, etc.

The categorical viewpoint permits treating syntax and semantics uni-
formly: a semantical interpretation is simply a morphism from a (syntac-
tically-presented) hyperdoctrine to a “model”-hyperdoctrine. This view is
illustrated in the case of the closure operator hyperdoctrine for determinate
CCP in Example 3.2 and extended to a natural class of fibred categories
sufficient for the operational semantics of indeterminate CCP.

2. Concurrent Constraint Programming

In this section we give a brief summary of the denotational semantics of
determinate concurrent constraint languages [Saraswat and Rinard 1990,
Saraswat et al. 1991]. This semantics is given in terms of closure opera-
tors and leads to a very pleasant hyperdoctrine. This led to the subsequent
research that forms the main thrust of the present paper. A detailed discus-
sion of programming idioms within the paradigm of concurrent constraint
programming, both determinate and indeterminate, is contained in the book
by Saraswat [1993] based on his CMU dissertation.

The main point of concurrent constraint programming is, in Saraswat’s
words, to put “partial information in the hands of the programmer”. Imag-
ine a system consisting of concurrent processes interacting via shared data
in some data base. The shared data can be thought of as a collection of
assertions in some fragment of first-order logic (£, ).

Processes communicate by adding information to the common pool of data
(a “tell” operation) or by asking whether an assertion is entailed by the
existing pool of data (an “ask” operation). Thus a CCP language includes:

o A data/store language (L,F) for describing the assertions one may
make (the constraint system).

o An ask-tell process language for describing how processes interact with
the data pool.
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STORE

ask/tell (L |_) LZSk‘/t@”

By analogy with imperative programming we call the collection of shared
assertions (or constraints) the “store”. In contrast with imperative program-
ming, however, a store might only give partial information about the values
of variables. For example rather than saying that a variable has the value
1994, it might merely say that the variable lies between 1729 and 4104. The
ask-tell language will be a simple process calculus, based upon the primitive
notions of ask and tell. The tell operation is the mechanism for communi-
cation: it takes a constraint ¢ and adds it to the common data pool. The
ask construct is the mechanism for synchronization. Given a constraint ¢,
ask(¢) succeeds or fails depending upon whether the store entails ¢. In the
former case, the process continues, in the latter case the process suspends
until (if ever) more data becomes available. The “ask” construct is what
gives the programmer the ability to manipulate partial information since
one can query the store despite the information being only partially defined.

2.1 Constraint Systems

It is convenient to go to a more abstract Ievel and introduce constraint sys-
tems (D, F)in the style of Dana Scott’s information systems [Scott 1982], the
only difference being we have no notion of consistency. From this view there
is a set, D, of assertions that can be made. Each assertion is a syntactically
denotable object in the programming language. The set D is equipped with
a (compact) entailment relation F, by which we mean that if an assertion p
is entailed by any subset of D, it must be entailed by a finite subset of D.
We write Py(D) for the set of finite subsets of D and write 0 Cy 7 to mean
that o is a finite subset of 7. This leads us to:

DEFINITION 2.1. A constraint system is a structure (D,t), where D is a

non-empty (countable) set of assertions or (primitive) constraints and

EC Pf_(D) }g D Ez's a relation, called the entailment relation satisfying:
pyp

CT o o
C2o0tgq if obpforal per and Tt g.
We extend F to a relation on Py(D) X Ps(D) by defining:

ob71 iff obpforallper
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In this notation, C2 becomes:
C2 obq if oF7and 1t q.

A constraint system is propositional in the sense that its assertions or con-
straints are quantifier free. Indeed, a canonical example of a constraint sys-
tem is any quantifier-free fragment of a first-order language, equipped with
the usual notion of entailment. However processes will contain constraints,
and thus involve local variables; in this sense propositions effectively get ex-
istentially quantified. Thus in our discussion we will talk about existential
quantification even though the language of assertions does not have explicit
quantifiers.

The store is equipped with a query-answering system that answers entail-
ment queries. The exact mechanism of this subsystem is a parameter of our
theory and is abstracted out of the discussion. Thus the issues of how to
resolve constraints efficiently are orthogonal to our concerns.

DEFINITION 2.2. The elements of a constraint system (D, +) are those sub-
sets o of D such that p € o whenever 7 Cy o and 7= p. The set of all such
elements is denoted by | D).

A store is thought of as its entailment closure, so the denotations of stores
are precisely elements of the constraint system. As is well known, (|D], C)
is a complete algebraic lattice; the top element represents the inconsistent
store.

2.2 Ask-Tell Languages

The following discussion in this subsection is a condensation of the discussion
in Saraswat et al. [1991]. The syntax and operational semantics of the
language are given in Table I. We assume given a constraint system (D, F).
We use the letter o to stand for an element of the constraint system. The
basic combinators are the ask and tell written ask(c) — P and tell(co)
respectively. Intuitively, ask(o) — P executes by asking the store whether
o holds, if it does then P executes, otherwise the process suspends; tell(o)
adds o to the constraints already in D. We shall assume that there is
a process NIL with no transitions. As far as the effect on the store is
concerned, NIL could be simulated by a process like tell(true) which does
have a transition but makes no difference to the store.

In the description of the operational semantics we have transitions between
processes. The transitions carry labels that describe the store before and
after the transition. The transition rules should be self evident; the guarded
choice makes the language indeterminate. The only point that needs ex-
planation is the notion of a fresh variable. When we say that a variable is
fresh we mean that it is completely new, i.e. it is not used as a local vari-
able by any other process and certainly does not occur as a global variable.
We assume that bound variables can be changed at will (a-conversion) to
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Syntax.
P:=NIL | tell(o) | ask(oc) =P | P|| P | va.P | Y7  ask(oi) — P

Operational Semantics.

(r,0 AT)
Tell tell(o) NIL
(7,7)
Ask (ask(c) = P)—— P if rto
(o,7) (o,7)
— P P—PpP
Parallel (O',T) (0_’7_)

PIQ——P|Q QIP——QI P
(0,0)

Hiding ve.P ——— P | where z is fresh.

(0,0)
Guarded Choice [y ., ask(si) — P] ——— P; , where o |- g,

Above, o, T range over assertions in some constraint system (D,F) while P and @ range
(o,7)

over processes. The notation P ——— () means that P with store o becomes @ with

store T.

TABLE I: Operational semantics for Ask-and-Tell cc languages

ensure this. Thus in particular two parallel components have no local vari-
ables in common. This is how the term, “fresh” is used in the semantics of
block-structured languages and in ordinary logic or the lambda calculus.

A more careful presentation of the operational semantics of hiding follows.
We assume that the store contains a list of “private” variables. These are
the variables that appear as the result of hiding. Any information pertaining
to these variables is available only to the process that created this private
variable. In particular the environemnt cannot see any of these private vari-
ables. Existential quantification provides the precise notion of “hiding the
information”. Thus if @ are the private variables in a store o the globally vis-
ible part of the store is d#.0. In most of the discussion we will suppress this
explicit mention of the notion of private variables and simply use existential
quantification to capture the visible part of the store.

In earlier presentations of the operational semantics we used the following
presentation of this rule:

dzo, T

4,
(0,0 AN3gT)

ve. A ——  va.(1, B)

The intuitive explanation is as follows. Suppose that we have va.A in the
store 0. Now A cannot see any references to the z in the store ¢ hence we
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have to consider the transitions of A in the store J,.0 as is shown above the
line. The resulting store 7 may contain references to z but this # cannot
be visible to the global environment and hence the global store seen is o A
d,..7, the o is back precisely because the z referred to in it is visible to the
environment. Finally the information in 7 needs to be still available to B so
we have the notion of a “private store” for B represented by the pair (7, B).

This explanation is of couse filled with the explicit discussion of variables
and scoping that the notion of “fresh” variables avoids. In the present ver-
sion we would say simply that the storeis 7 but that z is a “private variable”
and hence the visible part of the store is 9,.7. We need not existentially
quantify the original store o since z is a variable that has never appeared be-
fore. We also assume that alpha conversion of bound variables can be freely
done as needed. We end the discussion with a tiny example. Consider the
process va.tell(z = 1) in the initially empty store. It does the hiding step
generating the fresh variable x, henceforth designated private (and used).
Then it adds the formula # = 1 to the store. The resulting store is ¢ = 1
with @ designated private. The part of the store visible to other processes
(and the environment) is thus 3,.2 = 1 which is logically equivalent to the
trivial proposition true. Thus in terms of visible effect this process is the
same as NTL.

The denotational semantics in Table II refers to the determinate fragment.
The basic idea of this semantics is to model processes as certain special
functions, closure operators, acting on stores. In order to model a process
compositionally, it suffices to record its resting points. Mathematically, this
is mirrored by the fact that a closure operator is completely specified by
its set of fixed points. Given this representation of closure operators, we
can define some operations on sets of fixed points that are clumsy to state
in terms of closure operators qua functions. Most notably, one can define
intersection of sets of fixed points of closure operators. It is quite awkward
to write down this combinator in terms of functions; roughly speaking it
describes “interleaving”. It turns out that this operation is exactly what
one needs to model parallel composition.

The motivation for using closure operators is as follows. A closure op-
erator is extensive (increasing), which reflects the fact that the processes
add information to the store. A closure operator is also idempotent, reflect-
ing the intuition that classical entailment is not affected by having multiple
“instances” of an assumption. Finally we require monotonicity (and continu-
ity) for the usual computability reasons. In Table II we have left out details
like the definition of the environment mechanism and procedures. Never-
theless, from the denotational semantics certain connections with logic are
clear. The ask construct looks very much like an implication, the parallel
construct is essentially conjunction and hiding resembles existential quan-
tification. In the next section we discuss hyperdoctrines and make these
analogies precise.



188 PANANGADEN ET AL.

Semantic Equations.

[tett(o)] = {7 € [D|| 7+ o}

[ask(e) — P] ={re|D||r+o=re[P]}
[PllQ]=t(relnlIrelPlnre]Q]}
[ve.P] ={re|D||3o e [P]. 3.7 =3s0}

TABLE II: Denotational Semantics for Determinate Ask and Tell cc languages

3. Introduction to hyperdoctrines

Category theory developed in the 1940’s, starting from a pioneering pa-
per of Eilenberg and Mac Lane, in response to the need to relate disparate
branches of mathematics. In particular, subjects as different as algebra and
topology were coming together to form algebraic topology and the need for
a framework that was general enough to encompass both subjects was felt.

In the present work we have an analogous goal: to relate two seemingly
disparate structures in a precise way. Categorical logic is the natural frame-
work for this. The idea is that (1) intuitionistic first-order logic is a partic-
ular kind of categorical structure called a hyperdoctrine and (2) concurrent
constraint programming forms an instance of this structure. This makes
the case that CCP is logic. We would like to emphasize this point since it
seems to have caused some confusion in earlier presentations of this work:
a hyperdoctrine is a logic presented abstractly. It is not merely something
that captures some “aspect” of logic, such as substitution or binding. It
captures all aspects of the construction of proofs and even gives a more
refined treatment of logic in that it talks about “equality” between proofs.
The significance of hyperdoctrines being logics is that once we show that
CCP is a logic, with processes playing the role of formulas, then all the ap-
paratus of logic is immediately available for reasoning about programs. A
programmer can think about programs exactly as if she were manipulating
logical formulas in an elementary way.

Of course there are many kinds of logics and correspondingly many differ-
ent kinds of hyperdoctrines. These vary from being very similar to ordinary
first-order logic to being radically different, for example, linear logic [Girard
1987]. It will turn out that determinate CCP is exactly the fragment of in-
tuitionistic first-order logic with existential quantification and conjunction
(what are called “elementary existential doctrines” in the original treatment
of Lawvere) while indeterminate CCP is a little different; it corresponds to
a first-order logic with weakening and the usual rules for existential quan-
tification and conjunction but without contraction. We now proceed to the
presentation of the theory of hyperdoctrines.
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In dealing with logical structures, it is often useful to be able to abstract
away from the details of the syntax and from such syntactical matters as
how to handle variables (free vs bound variables, a-conversion, variable
“clashes”, and the like). Various algebraic approaches to first-order logic
have been developed over the years, e.g. cylindric and polyadic algebras
[Henkin et al. 1971], and more recently Lawvere’s fibred categories (hyper-
doctrines) [Lawvere 1969, Lawvere 1970, Seely 1983]. The latter led to the
development of modern categorical logic and type theory [Lambek and Scott
1986].

3.1 Basic ideas

We suppose the reader to be familiar with the basics of category theory up to
the notion of adjoint functors [Lambek and Scott 1986, Mac Lane 1971]. The
basic references on indexed category theory and logic are Lawvere [1970],
Seely [1983], where the reader is referred for further details.

ExaMpPLE 3.1. Motivating example: the pre-ordered case

Imagine we are in the context of a many-sorted first-order theory. The
standard presentation is as follows. In describing a first-order language
(FOL) one has a collection of basic sorts, a collections of individual vari-
ables with syntactically distinguishable subcollections for each sort, a fam-
ily of function symbols, which includes constants if there are any and which
almost always includes pairing (, ), and a family of relation symbols, which
almost always includes equality. One now can inductively define the terms
and similarly inductively define the formulas. Finally one has a notion of
entailment constructed from some given axioms and rules of inference. The
resulting algebraic structure is very rich and when presented purely as a
collection of equations requires a thick book to describe all the algebraic
structure [Henkin et al. 1971].

We now give a simplified categorical treatment of this same structure. In
this example we are not worrying about the structure of proofs, only about
the fact that a formula is entailed by a set of other formulas; this is the sense
in which the treatment is simplified. The data above can be organized in the
following way. We start with the sorts, written as U, V, W,.... We construct
a “base” category consisting of the sorts. In addition to the basic sorts there
are all the possible finite products, e.g. sorts of the form U x V x U and
so on. The terms in the FOL appear as the arrows in the base category.
What arrows are there? To start with we have at least all the identity
arrows and all the projections, e.g. arrows from U X V to U and V which
project out the appropriate component. We have all the arrows required
to make the products be categorical products. These include, for example,
arrows, called “diagonals” and written A from V to V X V; concretely we
have A(xz) = (2, x). Finally we have arrows for all the function symbols
in the FOL. Thus, for example, if f : U x V — W is a function symbol
with the indicated arity we include f as an arrow in the base. The base
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v
P _ PU x V)
¢ " ™
P

LUXYV,

Fig. 1: Picture of a hyperdoctrine — T

is of course closed up so that all the arrows required by compositions of
arrows are included. This last corresponds simply to making sure that the
collection of terms in the FOL is closed under substitutions. In short the
base category simply describes the usual inductive definition of the terms;
the objects are the sorts and the arrows are the terms themselves.

The formulas are stratified according to the sorts of the variables that
they refer to. Thus if a formula, ¢(z,y), refers to two variables of sort U,V
respectively, we say that ¢ “lives in the fibre over” U x V. More precisely, we
organize the formulas into sets indexed by the sorts of their free variables.
Thus, for example, if a formula has two variables of sort U and three of sort
W, it is in the set indexed by U x U x W x W x W. These sets of formulas
are called “fibres” and the imagery is that of a set of formulas as a fibre
growing out of a base object. Now the formulas in each fibre are quotiented
by two-way entailment; this is well-known to logicians as the Lindenbaum-
Tarski algebra and to computer scientists is reminiscent of a “term model”
construction [Bell and Machover 1977]. For a theory based on classical logic,
each P(U) is a Boolean algebra. For theories based on other logics, each
P(U) is an appropriate poset (Heyting algebra, etc.). We picture the fibred
structure as a family of “balloons” P(U) attached to the base (see Fig. 1).
Note that P(T) is the set of sentences (= closed formulas) of the theory,
where we have written T for the terminal object of the base category.

A very important simplification has occurred in passing to this view. Es-
sentially variables have lost their status as “names”, they only keep track
of the slots in the various terms or formulas. Thus we have freed ourselves
from any discussion of renaming gymnastics, scoping of names, capture and
other subtleties. Of course explicit variables are nice for human readability
but there is no reason that the foundational account of what logic is should
be burdened with the apparatus needed to talk about explicit variables.

Recall that a term ¢ of sort U in the language of the theory is an arrow
t:Uy X ...x U, — U, where Uy X ... x U, describes the sorts of the free
variables occurring in ¢. An arrow f:Vy x ...V, — Uy x ... x U, is an
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n-tuple of terms with m free variables. Given such a term ¢ and a formula
¢ € P(U) with one free variable z of sort U, substitution of ¢ for « defines
a Boolean algebra morphism t*: P(U) — P(Uy X ... x U,) : ¢ — P[t/z] i.e.
t* preserves the Boolean algebra structure of the fibres P(5). We call ¢*
substitution along t. Then P becomes a contravariant functor B°? — Bool
(with P(1) = t*).

Substitution 7*:P(U; X ... x U,) — P(Uy X ... x U, x Upyy1) takes a
formula ¢ with n free variables and “adds a new dummy free variable z” to
¢. The arrow m: Uy X .. . XUy X Upyy — Uy X... XU, € B projects onto the
first n components. Think of Uy X...x U, XU,4+1 € B as thelist (1,---,n+
1), denoted n+ 1. Then 7*:P(n) — P(n+1) maps ¢(ay, -, z,) —
olr(xy, -, 2, )] where ¢[n(zq,- -, 2y, 2)] signifies the substitution in ¢ of
the n + 1-list 7(aq,---,2,,2) for the n-list (21, --,2,), where z is a new
variable of sort U, 41.

More interesting from our point of view is what becomes of the quantifier
3 (and dually V). Since a quantifier removes a free variable, z say, from a
formula, clearly it induces amap P(Uy x...xU, xUpt1) — P(Uy x...xUp,).
The properties of the existential (respectively universal) quantifier amount
to the fact that it induces a functor left (respectively right) adjoint to the
substitution functor ©* (for every possible such projection w.) That is,
letting F,, denote entailment in P(U; X ... x U,), we have the following
bijective correspondences between entailments:

(T, ) Fpgr 7(0) ¢ Fn Vao(7, 2)

Writing 3,:P(Uy X ... X Uy X Upy1) — P(Up x ... x Up,) for the map
O(Z,2) — J.0(&, ) (and similarly for V), the above equivalences show
that we have adjoint functors 3, 4 7* 4 V.. Finally, we shall later discuss
“generalized quantifiers” 3;, V¢, corresponding to the adjoints to substitution
along arbitrary maps ¢. (This analysis of the quantifiers is originally in
Lawvere [1969].)

We illustrate the hyperdoctrinal structure in this case in Fig. 1 and 2;
the fibres (“balloons”) over a type are the formulas with free variables of
that type, and the substitution and existential functors are illustrated as
appropriate arrows. The map A:V — V x V is the diagonal map which
may be thought of as a (generalized) term (2, x) with one free variable z.
O

To step to a more general setting, we make some modifications in the setup
above. We replace the pre-ordered (entailment-based) structure on P(X)
(where X is just Uy x ... x U,) with more general categorical structure
corresponding to the proof-theory of the logical theory. One should imagine
the arrows of the fibres P(X) are (equivalence classes of) derivations of
formulas with one variable of sort X. As the theories we shall consider
in this paper will generally have finite conjunction (and perhaps no other
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PV x V)

Fig. 2: Picture of a hyperdoctrine — II

logical connectives), we shall suppose the P(X) to be Cartesian categories.
Likewise, our theories will generally only have the existential quantifier, so
we will only have the functors 3. This suggests the following definition. By
CCat we mean the category of small Cartesian categories (categories with
finite products and terminal objects) and Cartesian functors (functors that
preserve the finite products and terminal objects on the nose.)

DErINITION 3.1. Suppose B is a category with finite products. A strict B-

based hyperdoctrine (or a hyperdoctrine over B) is a contravariant functor
P:B°? — CCat satisfying

(i) for any arrow t: X — Y of B, the functor P(t) (usually denoted t*)
P(Y) — P(X) has a left adjoint Iy 4t* (so J: P(X) — P(V)),

(ii) Frobenius Reciprocity: for any arrow t: X — Y of B, and any
objects ¢ € P(X), v € P(Y) the canonical map F,(t*p AN p) — Y AT
1$ an tsomorphism,

(iii) Beck-Chevalley Condition: for any pullback diagram in B

X t

Y

X/

t! v
and for any ¢ € P(Y') the canonical morphism 3,.(t*¢) — t*(35¢) is
an isomorphism.

The key result in Seely [1983] is that in a natural sense, every hyperdoc-
trine is equivalent to one derived from a logical theory. Thus a logic and a
hyperdoctrine are exactly the same. The precise theorem is the following.
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Th is the category of first-order (A, 3, =) theories with interpretations of the-
ories as morphisms. (In this context we would require that interpretations
of theories preserve proof-theoretic structure.) Hyp is the category of hy-
perdoctrines (over arbitrary base B) and morphisms of hyperdoctrines (this
is defined in Seely [1983], but in fact is the obvious notion of indexed functor
that preserves appropriate structure). (These are actually 2-categories, but
we shall suppress this additional structure here.)

THEOREM 3.1. The categories Th and Hyp are equivalent. In particular,
a theory T canonically induces a hyperdoctrine P(T), and similarly a hy-
perdoctrine P canonically induces a theory T(P), in such a way that the
composite correspondances produce equivalent structures:

T~T(P(T)) P~PI(P))

The paper cited considers only the case of full first-order logic, but the
method is quite general and easily extends to a whole range of logics. So
a hyperdoctrine may then basically be regarded as a contravariant functor
‘P from the category of sorts to a category of suitable categories: each sort
X is sent to the collection P(X) of all formulas or “predicates” whose free
variables are of that sort. P(X) carries the categorical structure depending
on the logic, for example, a Cartesian category where products are given
by conjunction. An arrow ¢ in the category of sorts (essentially a term of
the theory) is sent to the “substitution” functor ¢* which substitutes the
term into predicates with the appropriate free variables. These substitution
functors have left adjoints given by existential quantifiers 3;. ( If the logic
allows universal quantification, Vy, it will be a right adjoint to t*, although
in this paper we concentrate on the existential quantifier). So far we have
only indicated how projection substitutions 7* have these adjoints, but if
the logic includes equality, this may be generalized, as we shall see below.

There are several points about this definition to make before continuing.
First, by having the functor P map into CCat, we are making two require-
ments: first that the categories (or “fibres”) P(X ) have finite products, and
second, that the functors t* preserve this structure exactly. If the logic
were to also have exponentiation, Frobenius Reciprocity would guarantee
that the functors t* would preserve that as well—as it is, in this context
it guarantees that the quantifier is well-behaved with respect to quantify-
ing formulas with dummy free variables occurring in part of the expression:
A.(0 A () = 1p A0 where b does not contain the variable x freely. The
Beck-Chevalley condition continues this guarantee of proper behaviour for
the quantifier by requiring that substitution preserve quantification (as we
required substitution to preserve conjunction). (The full story here may be
found in Seely [1983], where a precise logical characterization of the Beck-
Chevalley condition is given.) The point of course is that for a hyperdoctrine
derived from a logical theory, these conditions are automatically satisfied.

In addition, by introducing the “generalized” existential quantifier 3;, we
are assuming that the logic has an equality predicate. To see this, let us
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first consider the logical interpretation of 3;¢. If the theory includes equality,
then 3;¢ can be interpreted as 3,(t(z) = y A ¢()), where t: X — Y, ¢ €
P(X). On the other hand, the formula = y can be interpreted using the
generalized quantifier as Iatruey, where A: X — X x X is the diagonal
arrow & — (z, ¢) and truey is the terminal object (corresponding to the
formula “true” ) of P(X ). The reader can easily check that what we have just
said suggests that Iatruex is to be interpreted by the formula 3,((z, 2z) =
(z, y) A truey) which is clearly equivalent to the formula @ = y. This is
illustrated in Fig. 2. The conditions imposed on hyperdoctrines imply that
this is categorically sound in general.

As pointed out in Seely [1983], for the purposes of constructing a first-order
logic from a hyperdoctrine there are just three types of pullback diagrams
we need to check for the Beck-Chevalley condition.

1y, t
X(X>

1y xt

XxY Ax X AXY
t tx 1y rxly rx ly
Y A Y xY BXXWBXY
1
X —2 X
1x A

X—A>X><X

And these three diagrams generate four isomorphisms that must be checked
(the first diagram generates two by reflection about the main diagonal, and
the others each generate one). In logical notation these are:

(1) Fo(t(z) = y) A(a,t(x) = Fo(i(z) =y) A d(z,y)

(2) 3or((2's 1a") = (2, y)) Ae(t(z") = Fy((y's ¢) = (L), y)) A oY)

(3) Jar(@’ =) Ao(U(a)) = 3y(y = i) A o(y)

(4) Jo((2's 2") = (2, 2)) A P(a) = o(x)

Depending on the type of logic one has in mind, it is possible to generalize
the definition of hyperdoctrine in a number of ways. For example, we have
already mentioned having universal quantification. One such generalization
that is relevant for this paper is to weaken the structure imposed on the
fibres, so that instead of having Cartesian products we merely require that
the fibres have tensor products. (A variant of this idea, suitable for poly-
morphic linear logic, is outlined in Seely [1990]; the following definition is
based on the notion defined there.) Because of the particular properties of
the tensor product we will have in the models we consider in this paper, we
will add the condition that the unit of the tensor is a terminal object, but
a more general definition may easily be given if required.




A LOGICAL VIEW OF CCP 195

Before we proceed further we will give an outline of the definition of sym-
metric monoidal categories.

DEFINITION 3.2. A symmetric monoidal category is a category M with
a bifunctor, usually written . @ .: M X M — M and together with an object
I, called the unit for ® and natural isomorphisms assoc, sym,unit which
express associativity, symmetry and unit laws for ® and which satisfy certain
coherence conditions [Mac Lane 1971].

Examples of such categories abound in mathematics, indeed they are much
more common than cartesian-closed categories. Finite dimensional vector
spaces, Banach spaces, semilattices, and complete partial orders with strict
continuous functions are examples of symmetric monoidal categories.

For us the main reason to be interested in them is that for indeterminate
CCP it turns out that we have a tensor product rather than a product.
However the tensor we end up with has many of the features of a product,
for example it has projections, which means that we have a tensor product
that shares many of the logical features of conjunction.

By MCat, we mean the category of small symmetric monoidal categories
with terminal objects satisfying the property that the terminal object is
also the unit for the tensor product, and functors that preserve the tensor
products and terminal objects on the nose.

DErINITION 3.3. Suppose B is a category with finite products. A strict
B-based ®-hyperdoctrine (or a ®-hyperdoctrine over B) is a contravariant
functor P: B°? — MCatq satisfying

(i) for any arrow t: X — 'Y of B, the functor P(t) (usually denoted t*)
P(Y) — P(X) has a left adjoint I, 41t* (so J: P(X) — P(Y))

s

(ii) Frobenius Reciprocity: for any arrow t: X — Y of B, and any
objects ¢ € P(X ), € P(Y) the canonical map F:(t* @ ¢) — 1 @ 4
is an isomorphism,

(iii) Beck-Chevalley Condition: for any pullback diagram in B

X t

Y

X' 7 Y’

and for any ¢ € P(Y) the canonical morphism 3,(t*¢) — t"™*(35¢) is
an isomorphism.

The only change here is that we have substituted the tensor @ for the product
A in the fibres. This does affect the statement of Frobenius, but makes little
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other change. In particular, we have a direct analogue to Theorem 3.1: we
replace Th with the category ATh of theories in the variant of (affine) logic
which has dropped the structure rule of contraction, and whose logical rules
for the product ® are the same as the tensor rules in linear logic. Similarly
we must replace Hyp with the category @-Hyp of ®-hyperdoctrines.

THEOREM 3.2. The categories ATh and @-Hyp are equivalent.

We could generalise this definition by weakening the requirement that ¢*
preserve the tensor exactly by asking that t* be a closed functor, in the sense
that there is a natural map (transformation) t*1 @ t*¢ — t*(¢» ® ¢). With
this, the canonical map 3;(t*9 ® ¢) — ¥ @ 3;¢ may still be defined, and one
could even ask that it be an isomorphism—the logical significance of this
generalization is still unclear, and as it is not illustrated by our examples,
we shall not dwell on it further. Another generalization of the structure of
hyperdoctrines involves weakening the functorial structure of P. Again, as
this is not needed for this paper, we shall not consider the resulting notion
of fibration.

ExamPLE 3.2. The closure operator hyperdoctrine

In Panangaden et al. [1993] it was shown that the closure operator model
of determinate concurrent constraint programming induces a hyperdoctrine,
in such a way that makes precise the analogies with logic suggested by the
structure of the model. Moreover, this hyperdoctrine arises naturally from
the underlying logic of the constraint system. First, from the discussion of
Example 3.1 it is clear how to get a hyperdoctrine P: B”? — A-Preord
with A-preordered fibres, where the order is given by F, from the underlying
constraint system, as given by Table I. We shall denote by B the cate-
gory of sorts and terms for the underlying language—as in Example 3.1, by
A-Preord the category of A-preorders with monotone functions, by CAL
the category of complete algebraic lattices with monotone maps, and by
CAL* the category of complete algebraic lattices with adjoint pairs of
monotone maps as morphisms (the direction of the morphism being given
by the left adjoint). We use the following constructions (functors) to obtain
the closure operator hyperdoctrine from this (see Panangaden et al. [1993]
for the details). First, given any A-preorder P, let C(P) be the complete
algebraic lattice of closure operators (i.e. monotone, idempotent, and in-
creasing endomorphisms) on the (complete algebraic) lattice F(P) of filters
(i.e. up-closed, finite A-closed subsets ordered by inclusion) in P. Closure
operators do form a complete algebraic lattice under the extensional order
(or equivalently, under the order of reverse inclusion of their sets of fixed
points). The idea now is to apply C to fibres P(U) of the constraint hyper-
doctrine; since we are concerned to preserve the structure of the adjunctions
d; F t*, it is perhaps not surprising that for technical reasons it is necessary
to define C on maps so as to give adjoint pairs. So given a monotone map
t: P — () in A-Preord we define C(t) to be the adjoint pair given by the
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following construction; to see that it is adjoint, and for further details, see
Panangaden et al. [1993]. ¢ induces an adjoint pair of maps

1
F(P) — F(Q)

+—1

where t! is the map u —the filter generated by the direct image of u under
t, and 7! is given by inverse image. From such an adjoint pair, we can
construct an adjoint pair

by simple composition. We use the fact that any monotone endomorphism
on a complete algebraic lattice generates a closure operator—indeed there
is a least closure operator extending the given map. So t* maps a closure
operator ¢ € C(P) : F(P) — F(P) to the closure operator generated by
t=%;¢;t1 and ¢° maps a closure operator d € C(Q) : F(Q) — F(Q) to the
closure operator generated by t1;d;t~!. Composing the functor C with the
original hyperdoctrine and forgetting the adjoint pairs then gives the closure
operator hyperdoctrine CP: B°? — CAL. The existence of the adjoint pairs
guarantees that this has the required existential adjoint structure, and it is
easy to see that the existential quantifier in the logic of the hyperdoctrine
is given by the hiding (v) operator. The parallel construct is the product in
the fibres, and so is indeed “conjunction” in this logic.

4. The Simulation Preorder

In this section we begin the extension of the preceding theory to the inde-
terminate case. Of course the denotational semantics is no longer given by
closure operators but, rather, by sequences akin to failures. Rather than use
the denotational semantics, we will develop the connection between logic and
concurrent constraint processes by working with the operational semantics.
In the determinate case we get a good match with the traditional notion
of hyperdoctrine but in the indeterminate case we will end up with a ®-
hyperdoctrine.

As before we construct a hyperdoctrine from the processes but we need
to have a notion of morphism, or at least preorder, between processes. It
turns out that the “right” notion is simulation. We develop two, related,
notions of simulation, one based on a morphism and one based on the de-
rived preorder. This leads to theories that are similar with respect to the
relationship with logic but quite different with respect to their treatment of
process equivalence. This section concentrates on the preorder version. We
omit proofs here since they are all corollaries of proofs for the simulation
morphism case discussed in the next section. In this section we define the
simulation preorder but it should be clear that we are really defining a no-
tion of simulation morphism and then deriving the preorder by collapsing
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simulation morphisms. Of course a similar remark can be made about the
notion of simulation in traditional process algebra.

The basic idea of simulation ultimately derives from the notion of bisim-
ulation introduced by Milner and Park in the context of CCS [Milner 1989
and put into elegant and general form by several authors, especially Joyal
et al. [1993]; see also the article by Nielsen and Winskel [1994]. However,
there is an important subtlety in our theory. The labels on transitions are
not uninterpreted tokens, furthermore there are nontrivial relations between
labels which affects the notion of simulation. Furthermore the notion of sim-
ulation has to capture the idea that the store has a visible part corresponding
to the global variables. Once the notion of simulation is in place the proofs
are not difficult, however, considerable care must be exercised in coming up
with this definition. Indeed the bulk of the time was spent exploring sev-
eral possible notions of simulation before we arrived at the notion described
below.

A program interacts with the environment and makes moves in response
to the environment. A simulation relation must capture this interaction.
Thus one has to imitate not just the process moves but also the environ-
ment moves. In the present context we model this by considering sequences
of moves made by a process interspersed by moves made by the environ-
ment. This kind of structure was used in the denotational semantics of
the indeterminate concurrent constraint programming language in Saraswat
et al. [1991] and by various authors [Brookes 1993, Horita et al. 1994] in
modeling imperative concurrent languages. In the present case the informa-
tion content of the store can only be increased, thus the sequences take a
particularly simple form.

We need to ensure that enough of the effect of environment actions are
“remembered”, this is conveniently done by using the store. We need, there-
fore, to work with pairs consisting of a process and a store rather than with
a process in isolation. On the other hand we want simulation to capture the
possible behaviours of processes in all possible stores, thus we need to some-
how “quantify” over the possible stores. First we define what it means for a
process-store pair to simulate another such pair, then we define simulation
between processes. All the complexity of the following definition arises from
the fact that we are looking closely at the internal moves, they are not just
dismissed as so-called 7 moves, ¢.e. hidden internal moves. The transition
labels are interpreted as indicating updates to the store. When referring to
a transition given by the operational semantics we will use pairs of stores as
labels. We write an arrow with a * below it to indicate a finite sequences of
transitions defined by the operational semantics.

DerINiTION 4.1. We say that (P,o) simulates (@), 1), written (P,0) <
('T’,'T”)
(Q,7),if (i) o & 7 and (ii) whenever @ ———— Q', where 7’ = TA$ and ¢ is
a formula only involving the global variables, then for some P', o', 0" we have
(U’,U”)

P—— P, witho' = o A ¢, "+ 7" and such that (P',0") < (Q',7").
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We say, P simulates Q if (P, true) simulates (Q,true). If P < Q and ) < P,
we say that P and @ are similar and write P ~ ().

There are several points that need to be made. The stores are equipped
with a notion of private variables that were introduced by processes of the
form vz.P making hiding steps. When we write o - 7 we mean that refer-
ences to information regarding private variables has been removed by exis-
tential quantification.

The store is the basic observable, thus, the first requirement of simulation
is that the simulating store entail the store being simulated. Second, the
environment may upgrade the store before the processes under considera-
tion make any moves. Thus, in the above, we allow the simulated process
to make a move starting, not in the original store 7, but in a (possibly)
upgraded store 7/. The discrepancy between 7 and 7’ represents the effect
of the environment on the store. The environment cannot, however, make
an arbitrary change to the store; it can merely add information about the
global variables of the processes. Hence the requirement that 7 = 7 A ¢,
where ¢ only involves the global variables. The simulating process can only
be expected to simulate successfully if the environment does exactly the
same thing in each case, hence the requirement on ¢’. Finally after the pro-
cess being simulated makes its move and the simulating process makes the
moves, possibly many, needed for the simulation, the resulting process-store
combinations continue to stand in the simulation relation. The fact that we
allow the simulating process to take several steps means that we are working
with a notion analogous to “weak” bisimulation. As a result of the last re-
quirement the definition is given in so-called “co-inductive” form which can
be interpreted in the same way as is traditionally done for bisimulation, i.e.
by unwinding the definition as Milner’s original treatment did or by using
fixed points as in Park’s formulation.

Before discussing the doctrinal structures that arise it is worth looking at
some attempts to define simulation that do not work. One could have tried
to define simulation between processes by saying that the simulating process
has to mimic the behaviour of the simulated process in any store. If one
does this then the co-inductive definition becomes strange. Suppose that P
simulates ) and () makes a step in store 7 to become )’ in store 7/ and that
P mimics this in 7 to become 7”. Now is P’ supposed to simulate ' in any
store? If so then the effect that P had on the store is forgotten and many
intuitive instances of the simulation relation fail to hold. What if we just
stuck to process-store pairs? Then when we attempt to construct existen-
tial quantification we have problems with Frobenius Reciprocity. Roughly
speaking the situation is this. Suppose that we had (P, o), when we perform
existential quantification we would naturally try (vz.P,3,.0), but now the
correspondence between the z in the process and the z in the store is bro-
ken. Thus we need to factor out the effect of stores in order for existential
quantification to work properly but we need to keep the stores around in
order for basic examples to work. As will be seen in the next section, what
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we are really doing is defining a labelled transition system and using the
notion of a morphism between labelled transition systems. The states of the
labelled transition system encode the information in the stores, including
information added by the external environment, but the initial states allow
one to speak of processes without tying them down to specific stores. The
examples below will clarify the situation.

EXAMPLE 4.1.

P:ask(z=0)— [tell((z = 1) A(y = 1))]

Q ask(z=0) — [tell(z = 1) || tell(y = 1)]

Here P upgrades the store in one step while ) does the same thing but in
two steps. These can simulate each other. This example shows why we need
to record the contribution of the stores in the definition of simulation. Tf we
could only keep track of corresponding steps then P could not simulate the
second step of Q).

EXAMPLE 4.2.

P Jask(z=1) — tellly=2)+tell(z=3)]
+[ask(z = 1) — tell(y = 2)]
+[ask(z =1) — tell(z = 3)]

Q:ask(z=1) — [tell(y =2)+ tell(z = 3)]

Here the 4+ in () and inside the first clause of P is shorthand for the guarded
choice with trivial guards. In this example P and ) can make the same
choices but they are made at different “times”; these two processes can
simulate each other. This is the concurrent constraint programming version
of the famous CCS example of two processes that are trace equivalent but
not bisimilar. We have not defined bisimilarity yet but it should be more or
less clear what it would be and that these processes are not bisimilar. Thus
two-way simulation does not imply bisimilarity.

We are ready to discuss the hyperdoctrine structure now. The base cat-
egory is, as before, the category B, which was used in the closure operator
hyperdoctrine. Each fibre consists of processes with free variables of the
sorts given by the base object. Thus a process () belongs to some fibre,
each fibre defines a set of free variables and the free variables of () are re-
quired to be contained in the set of free variables associated with its fibre.
The stores may of course contain other private variables but they are hidden
from the environment. The fibres are preordered by the simulation preorder.
The following propositions summarize the situation. We note the following
proposition which has a routine proof.
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ProprosiTioN 4.1. The simulation relation is a preorder.

1s justifies our writing P < () 1 simulates ().

The next few propositions establish the structure of the fibres. We begin
with the trivial observation that each fibre has terminal objects, given by
NIL. Note that NIL is similar to tell(true) or ask(false) — tell(¢), for
instance. The next proposition shows that we have a tensor product in
the fibres and thus that we are ready to begin showing that we have a
®-hyperdoctrine.

ProprosiTION 4.2. If P < Q and P' < Q' then [P || P'] < [Q || Q']

This means that the parallel composition is a bifunctor and hence a suitable
candidate for a tensor product. It is worth noting that NIL, in addition
to being terminal, is also the unit for the tensor product as the following
obvious proposition states.

ProprosiTION 4.3. For any process P we have P ~ NIL|| P.

In fact parallel composition is more than just a tensor, it has projections as
well as the following obvious proposition shows.

ProposiTiON 4.4. P||Q <P and P || Q < Q.

Given a tensor, we can now show that “ask” is a limited form of implica-
tion. This proposition suggests that the parallel composition is the “correct”
tensor to use in the present theory.

ProposiTION 4.5. The following adjunction tableau holds:

[P || tell(®)] = @
P < ask(¢) — @

This is, of course, not necessary to show that we have a hyperdoctrine. The
proof will be given in the next section.

The next proposition is essential since it makes the fundamental connec-
tion between the local variable construct and existential quantification via
the notion of adjunction. In order to state it properly we must first explain
a point of notation. Recall that we are viewing processes as being stratified
by sets of free variables. If .S is an object in the base category and ) is in
the fibre over 5, we could also have ) be in the fibre over some other base
object S’ where the free variables associated with S are all included in those
associated with $’. We write 7*(Q) for the process () viewed as living over
a fibre with one more free variable. In the syntax of concurrent constraint
programming there is no difference between () and 7*(@)), it just means that
some variable, usually which one is clear from context, does not occur free

in Q.
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ProrosiTiON 4.6. The following adjunction tableau holds:

ve.P <
P = Q).

This is, of course the important adjunction that tells us that the concurrent
constraint programming languages are equipped with existential quantifica-
tion. All these adjunctions work equally well in the determinate and in the
indeterminate cases.

Finally we need the Beck conditions and the Frobenius reciprocity condi-
tion. In our context, Frobenius is the following more or less obvious propo-
sition.

ProrosiTiON 4.7. (Frobenius Reciprocity)

va [P || 7(Q)] ~ (va.P) || @

Proor. The statement of the proposition implies that x does not occur
free in (). Thus in each case the local declaration causes a fresh variable
x to be in the store and ¢ cannot affect or be affected by any proposition
involving x. Any step of one of the above processes can be literally mimicked
by the other as can immediately be seen from the operational semantics. O

Essentially the Beck condition says that substitution interacts properly
with existential quantification. The following propositions capture the key
points. We use the standard notation P[t/x] to mean the result of replacing
free occurrences of z in P by the term t.

ProrosiTIiON 4.8. For any term t in the term language of the constraint
system we have

(1) va.telllx =t) ~ NIL

(2) va. [P || tell(x = t)] ~ P, where P does not contain a free occurrence

of x.

Proor.  The first statement is, of course, an immediate consequence of
the fact that the process va.tell(x = t) cannot make any observable effect
on the store. The second statement follows by applying Frobenius and the
first statement and recalling that NIL is the tensor unit. O

ProPOSITION 4.9. P[t/z] ~ va.[P || tell(xz = t)] where t is assumed not to
contain any free occurrence of x.

Proor. If 2 is not free in P then the LHS is just P while the RHS
is similar to P by the preceding proposition. Thus we can assume that x
actually occurs free in P. The following argument is the outline of a proof
by structural induction. A process interacts with the store in two ways,
by asking or telling. Suppose that an occurrence of z in P is of the form
tell(¢(z)), where we have indicated the dependence on x explicitly. On the
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LHS this becomes tell(¢(t)), which adds the formula ¢(¢/z) to the store.
The latter formula is logically equivalent to 3,.[(z = t) A ¢(2)]. Thus as
far as this transition goes the two processes can mimic each other. If the
occurrence of z is of the form ask(¢(x)) — P’ then on the LHS this becomes
ask(p(t/x)) — P'[t/z] which can make a transition only if the store entails
¢(t/z). On the RHS the process has added & = ¢ to the store, so if the
store on the LHS entails ¢(¢/2) the store on the RHS entails ¢(2) since
it contains the additional fact 2 = ¢. Conversely if the store on the right
entails ¢(x), in virtue of the fact that it contains 2 = ¢ it will immediately
entail ¢(¢/2). Now consider any proof that the RHS store entails ¢(z). The
formulas used in this proof either came from the environment, in which case
they do not involve  and are present in the LHS store as well, or they came
from the actions of P-derivatives in which case the version with ¢ replacing
x is present in the LHS store. Thus one can construct a proof that the LHS
store entails ¢(t/x) by carrying out the substitution everywhere in the proof
constructed on the RHS. Thus in each of these cases the two processes can
mimic each other on a step by step basis. O

The Beck conditions are now consequences of this. There are four essential
cases corresponding to the three types of pullback diagrams that must exist
in any category with finite products (the first type of pullback gives rise to
two isosimilarity conditions) [Seely 1983]. We leave the proofs as exercises
for the reader.

ProrosiTioN 4.10.
(1) va.[tell(t(z) = y)]
(2) vw’-[tell(< t(a")) = (z, y)] || P(t(z"))
~ vy [tell(< y') = (tz), y)l Il Py)
(3) va' ftell(z" = 2)] || P(t(x")) ~ vy’ [tell(y" = t(2))] || P(y')
(4) va' [tell((2', ') = (x, 2))] || P(2') ~ P(z)

We now discuss some features of the simulation preorder that distinguish
the indeterminate language from the determinate language.

| Pa,t(z)) ~ va. [tell(t(z) = y)] || P(z,y)
]

ProprosiTION 4.11.

(1) In both the determinate and the indeterminate concurrent constraint
programming languages we have P || P < P for any P.

(2) In the determinate language P < P || P for any P.
(3) In the indeterminate language P £ P || P for some P.

Proor. We give a sketch of the proofs. The first is easy. Note that
P < NIL and P < P so by functoriality of parallel composition we get
P || P <P NIL~ P. Note that we used the fact that NIL is both
terminal and the unit for the tensor.

To show the second part we need a pair of lemmas whose proof is straight-
forward and familiar, but long, and is hence omitted [Saraswat et al. 1991].
Note that the first is clearly not true in languages with “tell” guards.
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LemMA 4.1. (OPERATIONAL MONOTONICITY) If a transition is enabled in
any store then it is enabled in any upgraded store as well.

The following only applies to the determinate language.

LeMMA 4.2. (CONFLUENCE) In the determinate language if a process P
in a store o can execule two transition sequences leading to P’,o’ and

P, o", it is always possible to find a process P" and store ¢ such that
(U’,U”’) (O.II’O.IH)
Pl—>*P”/ and P”—>*P”/.

Now suppose that P || P executes a sequence of transitions ending up with
the store o and with the process P; || P.. We would like to show how
to associate a pair (P’,7) with (P, || Pz,0) in such a way that the condi-
tions for a morphism are fulfilled. Because of operational monotonicity we
can assume that all environment contributions occur in a single step at the
beginning. Thus we can consider purely internal transitions of (P || P, ¢)

leading eventually to (P || P2,0). Let us assume for the moment that the

(¢701)
transitions can be partitioned into two separate subsequences P——, P;

(¢,02)
and P—2>*P2 with ¢ = o1 A 03. Now by confluence we can find P, 7

with the required properties. The only caveat is that we might not be able
to partition the transition sequence of P || P as claimed above. This will
happen only if one of the processes adds some information to the store that
the other one uses to answer an ask. But since the two processes in question
are both derivatives of a single determinate process the second process can

add this information itself. We can use confluence to construct a pair of

(¢,01) (¢,02)
execution sequences P—1>*P1’ and P—2>*P2’, where P{ and P} differ

from their unprimed counterparts by having executed a few more transi-

. (¢701) f (¢7U2) f
tions. One can now apply confluence to P———, P and P———,P; to

construct the required (P’,7). Since 7 F oy and 7 F o, we have 7 - 0.
Since this construction was based on an arbitrary finite transition sequence
of P || P it clearly applies to all the states of the labelled transition system
associated with P || P and describes a simulation morphism. Thus P can
simulate P || P.

For part three we note the following simple example. The point is that in
the indeterminate language we do not have the confluence property and the
above result is false. For example, suppose P = [tell(z = 1) + tell(y = 1)],
then P || P could produce the store (z = 1) A (y = 1) starting from the
empty store, which P cannot produce starting from the empty store. O

An immediate corollary of part (2) of the above proposition is that parallel
composition defines a product for the fibres in the determinate language.

COROLLARY 4.1. In the determinate version of the concurrent constraint
programming language, parallel composition defines a product.
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Proor. We have already noted that P || @ < P and P || @ < @ in propo-
sition 4.4. Suppose that P < () and P < R. Since parallel composition is
tensor we have P || P can simulate @ || R. Since we are looking at determi-
nate processes only we have P can simulate P || P. Thus by transitivity of
the simulation preorder we have P can simulate @ [| R. O

On the other hand, the indeterminate language is also equipped with a
product as the following proposition shows. We recall that P + () is short-
hand for ask(true) — P + ask(true) — Q.

ProrosiTioN 4.12. If P can simulate () and R, then P can simulate Q) + R.

¢,0
Proor. The only steps that @ + R can make are (@ + R) L Q' or

¢, 7
(Q+R) ¥> R’. By assumption each of these can be simulated by P and

the resulting configurations can be simulated by the resulting P-derivative
as well. O

Note that P+ @) cannot simulate P || ¢ so || is not a product in the situation
described by the indeterminate language; + is the product while || is tensor
product.

To summarize, one can construct a hyperdoctrine with the same base cat-
egory as before and with processes as the objects in the fibres. The arrows
in the fibres are instances of the simulation preorder. Parallel composition
plays the role of tensor product and “ask” and “tell” are adjoints, show-
ing that there is a limited notion of implication between processes. In the
determinate Tanguage the parallel composition plays the role of Cartesian
product whereas in the indeterminate language the choice construct acts as
the Cartesian product.

|| is tensor | || is product | + is product
Determinate CCP Yes Yes No
Indeterminate CCP | Yes No Yes

5. Simulation Morphisms

A simulation between processes provides detailed information about how the
behaviours of the two processes correspond; in particular there may be quite
different ways in which the two behaviours correspond. In the last section
we collapsed this information and merely recorded that a correspondence ex-
isted. In the present section we look at the more refined notion of simulation
where we actually keep track of the way in which one process simulates an-
other. We get a category of processes where the morphisms are simulations.
The basic adjunction structure is still present but other logical aspects are
altered. In particular the notion of isomorphism is very different as will be
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seen in the next section. As a result, although Frobenius Reciprocity does
hold, the Beck conditions do not quite hold in full generality.

We can formalize the notion of simulation by adapting the notion of mor-
phism between labelled transition systems defined, for example, by Nielsen
and Winskel [1994]. The idea is to define a labelled transition associated
with each process. We first recapitulate the (slightly modified) definition of
labelled transition system. We assume that we are working with some fixed
constraint system and have, therefore, a well-defined notion of formulas that
can be in the stores.

DEFINITION 5.1. A labelled transition system is given by a quadruple
(Q,q0, L, T), where @ is a set of states, qq is a distinguished member of @,
called the initial state, L is a set of labels and T is a transition relation
defined as a subset of ) x L x Q. We write l: ¢ — ¢ rather than (q,1,q")
for the members of T. The relation T satisfies (i) for every state q there is
a transition called the identity, i,:q — q, (it) if l:q — ¢ and l: ¢ — ¢" are
both in T then ¢ = ¢".

DEFINITION 5.2. A constraint-labelled transition system (abbreviated
CL-transition system) is a labelled transition system in which the states have
the form of process-store pairs and the labels are formulas of the constraint
system.

Now we define a pair of CL-transition systems associated with a process.

DEFINITION 5.3. Let P be a process. We define a CL-transition system
L(P) with states consisting of process-store pairs and transitions given by
the operational semantics of CCP in the following way. The initial state is

(P,true). Suppose that (Py,0) is any state of L(P) and Py u Py is

a transition given by the operational semantics, where o' is any store such
that o' = o A ¢, and where ¢ only refers to global variables of P. Then there
is a transition from (Py,0) to (Py,0") labelled by o’ in L(P). Similarly we
define the labelled transition system L*(P) exactly as above except that we
have a transition for every finite transition sequence given by the operational
semantics.

Note that the only processes are the derivatives of P. Thus, by definition,
every state is reachable from the initial state.

The transition labels in £(P) describe the effect of the environment. We
could have used pairs of stores to label the transitions of L(P), as we do in
the operational semantics, but the second member of any such pair is the
same as the store component of the target pair in the labelled transition
system, so we just use the first member of the pair of stores as the label.
The ¢ in the definition above represents information added to the store by
the action of the environment.
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DEFINITION 5.4. A morphism f from a CL-transition system, L(Q) to a
CL-transition system L(P), is a map fo from the states of L((Q)) to the states
of L(P) and a map fy from transitions of L(Q) to the transitions of L*(P)
such that
(1) fo((Q,true)) = (P, true), i.e. fy takes the initial state to the initial
state,
(2) if fi(7":(Q,7) = (Q",7")) = o": (P, 0) — (P",0")) then
fol(Q', 7)) = (P,o) and fo((Q",7")) = (P",0"), i.e. we have an lts
morphism in the standard sense,
(3) if i(7":(Q,7) = (Q,7")) = 0"+ (P,0) — (P, 0") then
o1, o7 0" 1"
The same definition can of course be used for relating CL-transition systems
of the form L*(P) with each other and with those of the form L(P).

Now we can define simulation as a morphism of labelled transition systems.

DEFINITION 5.5. A simulation f from P to Q) is a morphism of CL-trans-
ition systems from L(Q)) to L*(P), also called f, such that if fo((Q', 7)) =

(P, 0), (Q'.7) —— (Q",7") is a transition of £(Q), fo((Q",7")) = (P", ")

and fi(t") =o' theno k1,0 7', 6" 7" and ¢’ = o N where T = TN .

We ensure by the last condition in the definition of morphism that the sim-
ulating process is subject to the same environment actions as the simulated
process. The other conditions ensure that the simulating process always has
a stronger store than the simulated process. The key point is that we have
a function f, which precisely describes the correspondence. Recall that the
definition of “stronger store” implicitly takes into account that the private
variables are removed by existential quantification before we compare the
stores.

Convention: We will often talk about transitions and morphisms be-
tween CL-transition systems. Rather than constantly repeating that the
store 7/ is of the form 7 A ¢ as above we will write an unprimed Greek let-
ter to indicate the starting store for a transition, a singly-primed letter to
indicate the store that is obtained by an environment action and a doubly
primed Greek letter for the final store. Furthermore when we are talking
about constructing a simulation we will not keep repeating that the label
on the simulating transition (o’ above for example) records the same envi-
ronment contribution.

We record a couple of obvious but important facts.

ProrosiTioN 5.1. The collection of processes of a concurrent constraint
programming language can be organized into a category Sim, the simula-
tion category, with processes as objects and simulations as morphisms.
Composition of two morphisms f o g is given by the functions fy o go and
fiog1. The identity is given by (idy,idy).
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The following proposition tells us that the simulation preorder of the last
section is just the preorder collapse of the category Sim.

ProrosiTioN 5.2. P simulates () if and only if there is a simulation f from
P to Q).

The explication of the logical structure of concurrent constraint program-
ming in this section closely parallels the treatment of the last section. We
must however show how the simulation maps are constructed. In order to
develop the hyperdoctrine with simulation morphisms we need to know that
|| is a tensor. First we need to relate the CL-transition system of P || @
with the CL-transition systems of P and ().

PRrOPOSITION 5.3. The structure of L(P || Q) (respectively L*(P ]| Q)) is of
the following form. For every state of the form (Py,0) of L(P) and (Q1,T)
of L(Q) there is a state (P || Q,0 A7) of L(P || Q). For every transition

(Py,0) SN (P{,0") in L(P) there are transitions of the form (Py || Q1,7)

, (P} || Q1,7") in L(P || Q) for every T and ¢, with ¢ only referring
to global variables, such that T+ o, o' = o A&, 7" = 7 A ¢. Similarly for
transition of L(Q).

Proor. It is easy to prove by induction on the length of transition
sequences, given by the operational semantics, that any derivative of P || Q)
has the form P’ || @ where P’ is a derivative of P and @’ is a derivative
of (). Given the rule for transitions of a parallel composition, the required
isomorphism is then easily constructed. O

We need two preliminary lemmas which can easily be proved by structural
induction. The first is a slight refinement of operational monotonicity.
iy (0,07) . . .
LEMMA 5.1. If a transition P ———— P’ is possible according to the opera-

tional semantics then for any formula ¢ it is possible to have the transition
(o Ao’ N)

_— P

The second lemma says that a process that does not have x as a free
variable cannot depend on information that refers to z.

LeMMA 5.2. Suppose that x does not occur free in the process P. If the

. (0,0 Np) ) ) . (Fz.0, (Fz.0) AY)
transition P ————— P’ is possible then the transition P

P’ is also possible and 1 will have no free occurrences of x.

Now we can state the basic construction that leads to viewing parallel
composition as a tensor product.

ProposiTIiON 5.4. If f: P — @ and f': P' — Q' are simulation morphisms
then there is a simulation morphism, denoted by f @ f', from P || P’ to

Qe
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Proor. In view of the preceding proposition, the labelled transition
systems £(Q || Q') and L*(P || P') can be assumed to have the structure
described in the last proposition. The simulation morphism f ® f' is con-
structed as follows. The CL transition systems in question all have the prop-
erty that all their states are reachable from the initial state. This means
that we can construct f ® f’ by induction on the length of the shortest
transition sequence from the initial state.

We set (f @ fo((Q ]| Q,true)) = (P || P’ true). We define f @ f
inductively as follows. Suppose that (f @ f')o((Q1 || @1,7)) = (P1 || P{,0)

and there is a transition in £(Q || Q') of the form (@1 || @1, 7) SN (Q2 ||
(), 7). This must arise from a transition of the operational semantics of
('T’, 'T”)

the form 1 ———— (2. We need to find a suitable transition in £(Q)
but we cannot just assert that £(@) has a transition of the form ({)q,7)

— (Q2,7") since we first need to argue that the pair (Q1,7) is a possible
state of £(@Q). In fact it is not! First recall that a store really represents
an entailment-closed set of formulas, the exact representing formula is not
important. Now consider the formula 7, it has three components: formulas
added by the environment, formulas added by the component ) and its
derivatives and formulas added by the component @’ and its derivatives. In
the LTS L£(Q) the first two components of 7 can be mimicked exactly but
in the third component any references to the local variables of )’ cannot be
mimicked by the environment. More precisely we can assert the following
by using appropriate environment actions. Let @ be all the local variables
of 7, the LTS £(Q)) will contain the state (@, 3%.7). Since the variables @
do not occur in ¢4 we can invoke Lemma 5.2 to assert that the following
transition exists

g7, 3a. 7" ,

1 —— @

according to the operational semantics and hence in the LTS £()) we must
have the transition

3.7’

(Qq,3id.7) —— (QY, Fa.7").

Now the simulation f will specify a transition in £*(P), say (P, 0) =,
(Py,c"), that corresponds to this transition and, by the structure of the
transition system for a parallel composition, there is a transition (P || P2, 0)

2, (P || P2,0")in L*(P || P') associated with this latter transition. We
set (f @ )@ || Q27) — (@1 || Q2,7") = (P || Poyo) — (1|

Py,0"). We proceed analogously for transitions of the other component.
Checking that this is indeed a simulation is routine but tedious. O

It is absolutely essential that the CL-transition systems record environ-
ment moves. Without this the above proposition would be false as was noted
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in the course of the proof. It is easy to verify that this correspondence is
functorial.

ProposiTION 5.5. The correspondence that takes processes P and () to P ||

Q and simulation morphisms f, f' to f® f' is a bifunctor and forms a tensor
product.

Remark: (This remark can be skipped unless one is worried about fine
points in the definition of tensor products.) The alert reader might worry
about the coherence conditions required for a tensor product, these are de-
scribed, for example, in the book Mac Lane [1971]. These are, however,
trivial in our context. One requires various natural isomorphisms and the
commutativity of certain diagrams. These require constructing the simu-
lations that witness the isomorphisms. Since the isomorphic processes are
just, in one case, P || ¢ and @ || P and, in the other case, P || (@ || R) and
(P || @) || R the simulation morphisms are basically identity morphisms and
the coherence requirement is trivialized. O

In fact parallel composition is more than a tensor product; as we saw in
the last section it is in fact “almost a product”. In the sense of the present
section this means that there are projections but the universal property fails.

ProrosITION 5.6. Given any two processes Py and Py there are simula-
tions, called py and py, from Py || Py to Py and Py respectively.

Proor. Recall that the actual maps go in the direction opposite the simu-
lation. Thus we need to specify maps from L(P;) and L(FPy) to L*(Py || P2).
The simulation pq is given by the scheme

o’ o’
p1((Q1,0) — (Q1,0")) = (Q1 || Q2,0) — (Q} || Q2,0")
and pg is given similarly. It is obvious that these are simulations. O

The reason that this does not actually give a true Cartesian product is
that P || @ cannot always be simulated by anything that can simulate both
P and ). In the indeterminate language P + () can simulate both P and ()
but it certainly cannot simulate P || ) in general. As before we have that
P+ @ is a true Cartesian product in the indeterminate language. The proof
of the following proposition is an easy exercise and is omitted.

ProrosiTioN 5.7. If Py and P, are processes, there are simulation mor-
phisms n1 and ny from Py + Py to Py and P, respectively. If R is another
process equipped with simulation morphisms fi to Py and fy to Py, there is a
unique simulation morphism f from R to Py+ Py such that nyof; = f,e=1,2.

We now address the fundamental adjunction that exhibits the scoping
construct as a left adjoint and hence as an existential quantification. In
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order to do this we need to discuss the fibres and the indexed structure. The
base category is the category of sorts. Each fibre is a category with processes
as objects and simulations as morphisms. The free variables in the processes
have to be of the sorts specified by the base object. Where does the notion
of “local variable” or “private variable” enter the theory? The answer is “in
the stmulations”. Recall that we had first to define CL-transition systems
and then the simulation maps. In the definition of £L(P) (or L*(P)) for
some process P, we had to encode environment moves which were restricted
to being formulas that only refer to the free variables whereas the stores
could contain formulas that refer to private variables. Thus the base object
specifies what the environment moves can be and hence influences the notion
of simulation. It is important to clarify the meaning of 7* in this case. A
process P in some fibre has an associated CL-transition system L£(P); when
one uses 7* to move P to another fibre we get quite another CL-transition
system with different environment moves. From the point of view of the
indexed structure the object 7*(P) looks just like the object P but the
morphisms are quite different. For example consider the process ask(y = 1)
— tell(z = 2) with store (2 > 0) A (z = 1) in the fibre over N* where y and
z are the free variables of sort N. Now z is a local variable, perhaps created
by some now terminated subprocess. The environment can add information
to the store, for example y = 1, thus allowing the ask to proceed. But the
environment cannot add any information about the local variable z. Now
the process 7*(ask(y = 1) — tell(z = 2)) lives in the fibre over N° with
x now a global variable. Now the environment can add z = y to the store,
also enabling the ask in the process (pun intended).

ProrosiTioN 5.8. The following adjunction tableau holds
f
ve.P — @
f
P Q).

ProOOF. Suppose that we are given a simulation morphism f from vz.P to
(). We must construct a simulation morphism f from P to 7*(Q)). We spell

out how f maps transitions of £(7*(Q)) to transitions of £*(P). Consider

the transition (Q1,71) — (Q2,72) of L(7*(Q))). The stores may have z
appear as a free variable and 7 = 7 A ¢, where ¢ may have a free . Now
in £(Q) there is a state (Q1,3,.71); it is not a priori obvious that such a
state is reachable, but the next remarks will make clear that it is. In £(Q)
we can have an environment move in which the environment adds 3,.7 to
the store d,.7;. Note that it is not enough to consider an environment
move in which just 3,.¢ is added to the store. Consider, for example, a
situation in which a process is asking whether y = 3 and the facts z = 3 and
y = x are in the store. The environment could now state that z = 2 which
makes the store strong enough to answer the query being asked. If we now
move to the situation where the environment cannot mention z then the
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existential quantification of the formula x = z just yields the trivial formula
true. However by adding z = y, the environment can have the same effect as

it did before without having to mention z explicitly. Incidentally this shows
how to reach the state (1,3,.7) in L£(Q) by adjusting the environment
moves that were needed to reach (Q1,7) in L(77(Q)).

Note that any derivative of () cannot have occurrences of x as a global

variable, hence by Lemma 5.2 above, if the transition (Q1,71) N (Q2,72)

occurs in L(7*(Q)) we will have the transition (@1, 3,.71) =7, (Q2,3-.TA
1); since 75 = 7 At and 1 has no free occurrences of @ we have (3,.7) Ay =

3,.72. Using the simulation f we have a transition (P, 0q) . (P, 09) with
the required entailments between stores. In the stores ¢ etc., the variable
& may occur as a local variable but no environment move can have added

a formula mentioning x. Using Lemma 5.1 we see that there is a transition
N
(Py,010 A Tp) hr, (P2,02 A 7). This transition serves to simulate the

original transition that we started with. This is the inductive step in the
construction of the simulation f. The base case is of course trivial.
The reverse direction of the adjunction is almost immediate. As before we

have a transition (Q1,7) - (Q2,72) but now all the formulas are free of .
Thus this is a possible transition of £(7*(@))) in which the environment has
never added a formula that mentioned x even though it is free to do so. This
transition must be simulated by a transition of £*(P), in which also there
are no environment moves that added formulas mentioning z. The stores
in the transitions of £*(P), however, can mention & but any such formula
must be added by a transition of a derivative of P. Thus they are legitimate
transitions of £L*(va.P) with z being regarded as a local variable. Thus the
same correspondence can be used above to construct the simulation required
in the upper half of the adjunction tableau. O

Before proceeding to the Beck conditions and Frobenius we will discuss
the ask/tell adjunction briefly.

ProrosiTioN 5.9. The following adjunction tableau holds,

teli(o) || P] - @
P ask($) — Q.

Proor. We sketch the construction of the simulations informally. Suppose
we are given f. An initial transition of ask(¢) — @ can only occur if there is
an environment move that adds more than ¢, say o, where ¢ - ¢. But then
P is only required to simulate the move given o as well. If P is started in a
store o such that o - ¢ we have that P and P || tell(¢) are indistinguishable.
Furthermore we know that the latter can simulate () and that once the ask
has been answered the process ask(¢) — @) can only make the same moves
as ). Thus we can use the correspondence defined by f to define g. In the
reverse direction suppose that we are given g. Now we need to simulate a
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move of (). If this is in a store that entails ¢ we know that any transition
of @) is possible for ask(¢) — @ so we can use g to define f. If the store o
does not entail ¢ we can use the transition of the tell(¢) process to upgrade
the store to o A ¢ for P. We know that P in ¢ A ¢ can simulate any move
by ) in ¢ A ¢ and hence certainly in ¢ alone. O

The Frobenius reciprocity condition and the Beck conditions are as in
the preorder situation except that we must explicitly show the simulation
isomorphisms.

ProprosiTiON 5.10. The following isomorphism holds: va.(P || 7*(Q)) =

(va.P)]| Q.

Proor. This is almost immediate. The effect of having 7*(Q)) is to have
essentially the same process as () but there is now the possibility that the
environment can make moves that add information about z. However the
vr serves precisely to eliminate this possibility. Thus the two transition
systems are identical. O

The Beck conditions are analogues of the Beck conditions discussed for
the preorder case. However the requirement that there be an isomorphism
turns out to be too strong. We need a definition first.

DEFINITION 5.6. Suppose L is any LTS and suppose that o = (qo,1,q1) is a
transition from the initial state. We define the LTS L/a, called the quotient
of L by a, to be the LTS with initial state g1, the transitions and states being
the ones reachable from qy.

ProprosITION 5.11. The processes P[t/z] and va.[P || tell(x = t)] can sim-
ulate each other, if t has no free occurrences of x. Furthermore, one can
choose simulation morphisms f,q such that f o g gives the identity simula-
tion on P[t/z] while g o f gives a simulation of va.[P || tell(z = t)] by a
quotient of itself.

Proor. We need to exhibit a pair of morphisms between the CL-transition
systems L(P[t/z]) and L(va.[P || tell(z = t)]). Since these processes are in
the same fibre the environment moves are the same. A structural induction
proof establishes the required correspondence. The only nontrivial step is
the base case. If P is of the form tell(¢) then P[t/z]is of the form tell(¢[t/z])

which has the following transition (tell(¢[t/z]), o) Z, (NIL,o' A @[t]z]).
The other CL-transition system L*(vz.[P || tell(z = t)]) has the transition

(va.[tell(¢) || tell(z = t)],O')U—>*(NIL,E|x.O'/ AN ¢ A (x =t). The latter
store is logically equivalent to o’ A ¢[t/z]. However the latter process has
the additional step tell(z = ¢). One can consider the quotient in which it
does this step first; the rest of the transitions then can easily be seen to be
isomorphic to the transitions of P[t/z]. O
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Looking at this proof, it is clear however that of the four essential cases
of Beck given in Proposition 4.10, only the last suffers the problem above,
and that the other three are indeed isomorphisms. The key point here is
that in each of the first three cases the tell step is included on each side.
It was shown in Seely [1983] that these cases are sufficient for an “almost
reasonable” logic with equality, lacking essentially just the properties that
@ = z is terminal (that is, isomorphic to true) and that x = y is isomorphic
to (x, ) = (y, y). Many of the basic properties of the logic of equality do
nevertheless remain: reflexivity, symmetry, transitivity, substitution, and
the main equivalences of derivations. Indeed, an example of a structure
(groupoid representations) with this weaker structure was discussed in Seely
1983].

What this shows is that while the Beck condition is very close to holding
the condition does not exactly hold. However it also shows that the notion
of isomorphism in the simulation category is very strong. We do not get the
full correspondence with logic but we do have all the equations that follow
from the adjunction and Frobenius. Of course, as far as the logic without
equality is concerned, we do have all the required structure.

6. Bisimulation and Isomorphism

A key question in any study of the operational semantics of processes is the
role of bisimulation and other related notions of process equivalence. Given
the notion of simulation preorder and simulation morphism we immediately
have two notions of equivalence. (The first is repeated from Definition 4.1.)

DEFINITION 6.1. Two processes P, () are similar if P < @ and ) < P.
We write P ~ ().

DEFINITION 6.2. Two processes P, Q) are isosimilar if there are simulation
morphisms f: P — @ and g : ) — P such that fog and g o f are both
identity morphisms.

We define bisimilarity as we defined the simulation preorder. We use the
same convention as before of primed stores to indicate implicit environment
effects and double primed stores to indicate the final stores.

DEFINITION 6.3. We say that two process-store pairs (P,o) and (Q,T) are

C e (0',0") . . iy
bisimilar if whenever P ———— P’ is a possible transition defined by the
. . . . iy (', 7")
operational semantics, there is a finite transition sequence Q ——— Q'
with the T and o stores and the corresponding primed analogues all being
logically equivalent and (P',0") and (Q', ") being bisimilar, and vice versa
with the roles of P and () exchanged.

Except for the roles of the stores this is the definition used in concurrency
theory. The key facts are given by the next two propositions.
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ProPoOsITION 6.1. If two processes are bisimilar they must be similar but
there are similar processes that are not bisimilar.

This needs no proof. The positive direction is clear and the negative direc-
tion has already been demonstrated by Example 4.2.

ProrosiTIiON 6.2. Isosimilarity implies bistmilarity but there are bisimilar
processes that are not isosimilar.

Proor.  The positive direction is clear. Isosimilarity establishes an iso-
morphism of transition systems and thus one can always set up the corre-
spondence needed in the definition of bisimilarity. For the negative direction
note that for a process P, we have that P and P + P are bisimilar, by the
usual arguments familiar in process algebra, but they are not isosimilar. To
see this note that a simulation of P by P + P would require that a move of
P would have to be simulated by one, or the other or both copies of P in
P+ P. Whereas a move of either copy of P in P+ P has to be simulated by a
move P for the reverse simulation. Suppose that the left copy of P in P+ P
simulates moves of P. Then under composition a move by the right copy of
P in P+ P would be simulated by a move of the left copy of P, in short the
composition is not the identity simulation. The same thing happens with
any other choice that we make for the simulation of P by P+ P. O

The upshot is that isosimilarity is a very strong condition. We noted that
the Beck condition does not fully hold in the last section even though the
processes come “close” to satisfying the Beck conditions. It is straightfor-
ward to check that they are in fact all bisimilar. This raises the interesting
possibility of studying the generalization of hyperdoctrines where the pro-
cesses identities are to be satisfied only up to bisimilarity rather than up to
isomorphism.

7. Other Process-based Logical Structures

In this section we summarize results about other structures that can be
viewed in terms of fibred categories. We look at a couple of denotational
semantic models of indeterminate concurrent constraint programming, one
due to Saraswat et al. [1991] and one due to de Boer and Palamidessi [1991].
We also briefly recount an analysis of a linear variant of concurrent constraint
programming. Finally we discuss a simple concurrent imperative language
with block structure [Brookes 1993]. These last two examples show that the
view that local variables define an existential quantification is not dependant
on the notion of monotonic update. Curiously enough, one cannot, in any
obvious way that we could see, view local variables in sequential languages as
an existential quantification since one needs parallel composition to express
a Frobenius type property.

In the treatment of Saraswat et al. [1991] processes are modeled as sets
of interaction sequences. Each sequence gives information about the rest-
ing points of a process, i.e. points at which the process cannot move unless
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the environment adds more information to the store, plus information about
how the process and the environment interacted in order to get to the resting
point. Each such sequence is encoded as a special kind of closure operator.
The sets of sequences are closed under certain operations and one can prove
a full abstraction theorem with respect to a natural notion of observability.
The theory of de Boer and Palamidessi [1991] is based on very similar ideas
about encoding interaction sequences that lead to the resting point. How-
ever they also represent additional information that allows one to handle
deadlock. They have a different treatment of full abstraction resulting from
different closure conditions.

In both cases we can construct fibred categories with posetal fibres. One
takes the usual base category. The fibres consist of processes ordered by
reverse inclusion of sets of sequences. In each case one can easily check
that one has parallel composition giving a tensor and vz is a left adjoint
to substitution and hence can be viewed as an existential quantification.
One can verify both the Frobenius condition and the Beck conditions easily.
Formally these amount to the following statements. The first statement
below says that parallel composition is tensor.

[Al 2 [B].[4] 2 [B]
[ana)={zis]
The next statement says that + is product.

[A] 2 [B],[4]2[5B]

[4+a]218]
Finally we have the fundamental adjunction.

[ve.A] 2 [B]

[A] 2> =([B])
It is important to note that this would be wrong without 7*.

The ask/tell adjunction breaks down in the theory of de Boer and Pala-

midessi; this is not to be construed as a weakness or a criticism. What is
interesting is that there is “negative information” recorded in the theory and

this, though essential for treating deadlock, breaks the ask/tell adjunction.
The required statement is the following:

[tell(s) | A] 2 [B]
[A] 2 [ask(¢) — B]

Consider A = NIL, B = tell(¢). Clearly the inclusion above the line is an
identity but below the line we have [NI1L] D [[ask(<b) — tell(<b)]l, which is
not valid since ask(¢) — tell(¢) has a deadlock mode that NIL does not
have. Deadlock introduces negative information. If we do not introduce
deadlock information then this adjunction holds as well. In the example
above ask(¢) — tell(¢) is the same as NIL in the theory of Saraswat et al.
[1991] because neither can make any observable difference to the store.
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7.1 Linear Concurrent Constraint Programming

Recently several authors have been looking at linear concurrent constraint
programming in large part because it allows one to stay close to logic while
giving one the freedom to retract information [Saraswat and Lincoln 1992,
de Boer, Palamidessi, and Best 1994]. One has the same setup and indeed
even the same syntax for processes but now resources get consumed by
an ask. One must think in terms of consumption of resources and flow of
resources rather than consumption of facts. In order to model the traditional
notion of logical formulas in the store one needs to introduce exponentials to
model renewable resources as in Girard’s original treatment of linear logic
[Girard 1987].

It is straightforward to write down an operational semantics embodying
the above ideas. One can then define the analogue of the simulation mor-
phism of the last section and construct an indexed category. There are some
crucial differences. First of all, what is the analogue of requiring that ¢ - 7
as a way of expressing the correspondence between the simulating store o
and the simulated store 77 Since resources may get consumed one cannot
just use the notion of entailment. Instead we say that there is a map between
stores that describes exactly which resources correspond to which resources.
Furthermore we demand that the simulation maintain the existence of such
a map. Finally when the labelled transition systems associated with pro-
cesses are constructed, the environment moves have to acquire the status
of full-blown transitions. Now the environment moves can remove resources
from the store. With the definitions redeveloped as just sketched, one can
establish the adjunction

ve.P — @
(=)

and can also check Frobenius. It is not clear what the appropriate Beck
conditions should be and which of the various theories of linear hyperdoc-
trines are appropriate. This is the subject of further study. The fact that
the existential quantification phenomenon occurs in this “nonmonotonic”
situation is very interesting since monotonicity has been such a key part of
the preceding theory.

8. Conclusions

The main result of this paper is that indeterminate concurrent constraint
programming equipped with a suitable notion of simulation between pro-
cesses forms a coherent tensor hyperdoctrine. In simpler terms, one can
view parallel composition as conjunction and local scoping of variables as
existential quantification. We carried out this investigation using two closely
related notions of simulation, simulation as a preorder and simulation as a
morphism and found that the logical structure was the same but the in-
duced notions of process equivalence are quite different with bisimulation
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sandwiched strictly between them. From the point of view of pure concur-
rency theory the following points are of interest. The notion of simulation
is more “extensional” than is usual. Thus we do not just track moves of
one process by move sequences of the simulating process. Rather we look
at the observable effect of the move. This makes it possible that a process
with some possible moves is simulated by a NIL process. Furthermore even
when the moves do correspond the relation between the labels is nontrivial
and is not the usual, purely intentional, matching of labels but is, instead,
the relation of logical entailment.

A significant point is the following. One can look at programming lan-
guages that were not developed with any logical connections in mind, and
nevertheless still see the correspondence with hyperdoctrines and hence with
logic. There have been a number of studies of imperative languages with
parallel composition and local variables, for example by Horita et al. [1994]
and by Brookes [1993]. Once again processes are modeled by interaction
sequences that describe the interaction between the process and the envi-
ronment. Using the familiar pattern one can set up a fibred structure and
check that the basic adjunction holds and that Frobenius holds as well. The
latter amounts to new z in [P || Q] = [new z in P] || () where @ has
no free occurrences of . All these examples suggest that there is indeed a
common logical core to all concurrent programming languages.

There are several points to understand and extend. Our most pressing
concern is to flesh out the treatment of linear concurrent constraint program-
ming and understand completely its logical structure and the relationship
to linear hyperdoctrines. Secondly we wish to understand the programming
analogue of the universal quantifier. Roughly speaking this should somehow
express receptivity. This idea comes through in the work of Lincoln and
Saraswat on linear concurrent constraint program. Even more importantly
it is easy to see that the “scope extrusion” phenomenon of the 7 calculus is
mimicked by the interplay between the existential quantifier and the univer-
sal quantifier in ordinary logic. This suggests that understanding universal
quantifiers is important for understanding “mobility” in languages like the
7 calculus.

It would be very interesting to understand how higher-order process calculi
fit into this picture. In particular we do not see yet what the logical signifi-
cance is of the “functions as processes” correspondence discovered by Milner
[1992]. Finally we are actively developing and studying a synchronous, linear
language from the viewpoint of the present paper.
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