Categories for computation in context

and unified logic:
the “Iintuitionist” case

R.F. Blute! J.R.B. Cockett? R.A.G. Seely®

Presented to Peter Freyd
to mark the occasion of

his 60" birthday

Abstract

In this paper we introduce the notion of contextual categories. These provide a categorical
semantics for the modelling of computation in context, based on the idea of separating logical
sequents into two zones, one representing the context over which the computation is occurring,
the other the computation itself. The separation into zones is achieved via a bifunctor equipped
with a tensorial strength. We show that a category with such a functor can be viewed as having
an action on itself. With this interpretation, we obtain a fibration in which the base category
consists of contexts, and the reindexing functors are used to change the context.

We further observe that this structure also provides a framework for developing categorical
semantics for Girard’s Unified Logic, a key feature of which is to separate logical sequents into
two zones, one in which formulas behave classically and one in which they behave linearly. This
separation is analogous to the context/computation separation above, and is handled by our
semantics in a similar fashion. Furthermore, our approach allows an analysis of the exponential
structure of linear logic using a tensorially strong action as the primitive notion. We demonstrate
that from such a structure one can recover a model of the linear storage operator.

Finally, we introduce a sequent calculus for the fragment of Unified Logic modeled by con-
textual categories. We show cut elimination for this fragment, and we introduce a simple notion
of proof circuit, which provides a description of free contextual categories.

1 Introduction

% HIS document has its roots in the attempt to elucidate the structure of linear logic using
weakly distributive categories [CS91]. In that programme we started by investigating
the categorical proof theory of the (two-sided) linear cut rules, giving rise to the notion
Sof weakly distributive categories. Our rationale was that by so doing we could better

!Department of Mathematics, University of Ottawa, 585 King Edward St., Ottawa, ON, KIN6N5, Canada.
rblute@mathstat.uottawa.ca Research partially supported by Le Fonds FCAR, Québec, and NSERC, Canada.

?Department of Computer Science, University of Calgary, 2500 University Drive, Calgary, AL, T2N 1N4, Canada.
robin@cpsc.ucalgary.ca Research partially supported by NSERC, Canada.

*Department of Mathematics, McGill University, 805 Sherbrooke St., Montréal, PQ, H3A 2K6, Canada.
ragsOmath.mcgill.ca Research partially supported by Le Fonds FCAR, Québec, and NSERC, Canada.

modularize the structure of linear logic which would facilitate the establishment of coherence the-
orems [BCST]. It was a natural step to ask whether the exponentials, ! and ?, could be added in
a modular fashion to this basic setting [BCS92]. When we started to study this question, we were
struck by the prominent role of tensorial strength (and costrength) in the formulation. This led us
to consider whether it might be possible to use strength as a more primitive notion in the mod-
ular decomposition of these settings and resulted in the development of our notion of contextual
categories!.

The coherence conditions (over twenty commuting diagrams) for a setting in which strength is
taken as primitive are quite daunting. Indeed, initially, as we lacked any motivating models, we
were concerned that these “contextual categories” would simply foist a needless and rather complex
abstraction on the community. However, two connections persuaded us that this basic setting was
worthwhile.

The first connection, which we begin to explore in this paper, is the similarity of the system
to Girard’s approach to amalgamate classical and linear logic into one setting. In a linear sequent
calculus it is natural to model context by dividing the terms to the left of the turnstile into a
“classical” portion followed by a “linear” portion. Contextual categories are the proof theory of
this fragment of Girard’s “unified logic” [G93] and, indeed, we are convinced this is the basic
building block of the categorical proof theory for this logic.

The second connection, which we do not explore in this paper but rather leave to its sequel,
is to the “Action Calculi” of Robin Milner. Strength is of course a pervasive notion in computer
science. The view of a function (or program) as a map between two objects in a given context
is absolutely fundamental to computing. The categorical machinery for handling context in this
sense is, specifically, strength and, in generality, fibration. That the former gives rise to the latter
in the classical setting is known (this is detailed in [Co91]). However, less well-explored is the
notion of strength as applied to linear settings and this becomes quite important when reasoning
about communicating processes. The fact that some processes are limited-resource or “threaded”
leads naturally to treating them in a linear fashion. It was partly to accommodate these features
that Milner developed his “Action Calculi” [M93]. These provide another source of examples for
contextual categories.

The development actually starts by describing the general notion of strength and how it gives
rise to a fibration. The aim is to remind the reader of the correspondence that the various notions of
strong functor, strong natural transformation etc. have to their fibrational counterparts. Formally,
there is a full 2-embedding of these strong categories into (structured) fibrations. We briefly discuss
datatypes and the properties one should expect of them in the presence of context.

Next we study contextual categories: these are categories with a natural contextual self-action.
Much of the discussion is concerned with establishing the coherence conditions both for contextual
categories and for their actions (which we call contextual modules). Of some interest is the fact
that the empty context T induces a “storage” cotriple which turns an object X into a context for
T: X—XOQT.

Next we describe the fragment of unified logic, called the context calculus, for which these
contextual categories are the proof theory. The categorical coherence diagrams may be seen as
arising from those manipulations which are necessary to establish the cut elimination theorem. We
close by describing the proof circuits of this logic which provide a usable and very economical view
of the whole calculus.

!We must point out that this term has been used in a completely different sense by J. Cartmell [Ca86].

In a sequel we plan to extend this study to include the dual notion of cocontext. In a weakly
distributive setting the underlying duality between the tensor (®) and the par (&) should extend
to the situation where one includes context. Thus, there should be a dual notion of cocontext.
One way to view this is as the requirement that the corresponding sequent calculus not only has
a classical and linear portion to the left of the turnstile but also to the right. Categorically this
gives a cofibration over the cocontexts and gives rise to a fibrational fork in which context and
cocontext interact. In the setting of a fibrational fork the datatypes must, of course, preserve both
structures. In addition, to be able to handle at least the tensor-par fragment of linear logic, we
must add those connectives to the context calculus as well. The interaction between the classical
and linear portions of sequents then begins to develop some of the complexity we expect from linear
logic and from action calculi.

2 Strong contexts and fibrations

This section starts by introducing the notion of strength through the notion of a functorial action.
Next strong contexts are described. These, it is then shown, can alternatively be formulated as a
fibration.

Throughout this development we shall talk about “computations in context.” This terminology
is not meant to prejudice the generality of the theory but rather to lend a certain intuition to the
proceedings.

2.1 Functorial actions and strength
Let X be a category then X is said to have an action on a category Y if there is a bifunctor?

©:XXY —Y

A strong functor F': Y — Y’ between two categories with an X-action is a functor together
with a natural transformation

0: X0 F(Y)— F(X0OY)

called a strength. A strong natural transformation between strong functors is an ordinary
natural transformation a : F; — F, which satisfies the additional property:

XoFR (V)29 X0 Fy(Y)

01 0,

Fl(X®Y)—a>F2(X®Y)
We shall often call these strong transformations. It is almost a formality to observe that:

Proposition 2.1 Categories with an X-action, strong functors, and strong natural transforma-
tions form a 2-category Act(X).

The only ingredient in this which needs a comment is the manner of composing the strengths
of strong functors:

(F,0r)0 (G,0c) = (FoG,0q;G(0F)).

?In this paper, by “bifunctor” we just mean a functor whose domain is a product of categories.

2.2 Structural actions

An action _ @ _is structural if the functor X ¢ _is a cotriple for each object X; explicitly this
means that there are in addition the following natural transformations, called duplication and

elimination:

d : X0Y —=X0(X0Y)
e : XY =Y

where these data satisfy:

XoY-—-—X0o(XoY)l24x oy

XoY

XoY d X0(X0Y)

Xo(X0Y)

or equationally:

lod

d;e
d;1oe
d;d

e;e

This last condition is a consequence of naturality, but it is worth making it explicit here.

XoYozdieaxoz

YoXoXoy))

1
1
d;1od
1o ese

Next we extend the definitions of strong functors and transformations to the structural case.
In fact, the strong transformations are unchanged from above, but strong structural functors must
also preserve the duplication and elimination structure. Specifically this means that the following

diagrams must commute:

Elimination strength:

Duplication strength:

X 0 F(Y) d_, X0(X0oFY))

0 106:0

F(XQY) FIX0(X0Y))

F(d)

Once again it is a formality to show that
Proposition 2.2 Categories with an X—structural action, strong structural functors, and strong
natural transformations form a 2-category StrAct(X).

2.3 Fibrations and structural actions
We suppose the reader is familiar with the basic notions concerning fibrations and indexed cate-
gories. See for example [Bo94].
An X-structural action on Y gives rise to an indexed category over X and thus a fibration over
X. The fiber over an object X is to be thought of as the Y—computations in the context X. Thus,
maps in the fiber are
f: XY =Y and g: XY —Y"

with composition given by
;10 fig: X0Y —Y”

and identities given by
e: XY —Y.

This is of course the Kleisli category of the cotriple X © _. Functors between these categories of
computations in context are provided by precomposing with the change in context. The functorial
nature of this change in context follows immediately from the naturality of the duplication and the
elimination transformation.

Alternatively we may form the total category Cx(Y) of computations and contexts and show
that the functor to X is a fibration. The objects of the total category are (following the Grothendieck
construction) pairs (X,Y) where X € X and Y € Y, the maps are pairs (b, f) : (X,Y) — (X", Y)
where h: X — X'and f: X @Y — Y’ is a computation in the context X.

Slightly more surprising is the fact that strong functors give rise to morphisms of fibrations and
strong transformations to transformations of fibrations. The passage between the two is as follows:

e Strong functor to morphism of fibration: Given a strong functor F': Y — Y’ we may define
a family of functors between Y—computations in context X and Y'-computations in context
X. Let f: X QY — Y’ then define Fx(f): X 0 F(Y) — F(Y') to be

0 F(5) /
XOFY)— F(X0Y)—— F(Y").

It is straightforward to check that these are functors and they commute with the functors
which change context.

o Strong transformation to fibrational transformation: Given a strong transformation a : F
— (we have a transformation ax : F'y — Gx defined in the obvious way by e;a : X 0 F(Y)

— G(Y).

It is clear that this gives a faithful 2-functor from the 2-category StrAct(X) to the 2—category
of fibrations over X. Our aim is now to supply a full and faithful 2-functor to a 2—category which
we know to have all weighted limits. (We shall see in the next section that StrAct(X) does not have
this property.) In order to achieve this we construct the comma 2-category between the following
2—functor and the identity:

Const : Cat — Fib(X); Y — [Pr; : Y x X — X].
An object of this 2-category ConstFib(X) is a triple:

(Y,M:Pr, — F, F)

where Fis a fibration over X and M is a morphism of fibrations from the constant fibration at Y.
Theorem 2.3 For any category X there is a full faithful 2-embedding of V : StrAct(X) —
ConstFib(X).

First we note that the functor
KoY % X — Cx(Y): (foa) = (5 foa)

which is the identity on objects but sends maps to those which do not use context is a morphism
of fibrations. This is a 2—functorial assignment. We must show that it is full and faithful. To this
end we show how from morphism of fibration and transformations of fibrations we can recapture
their strong counterparts:

o Morphism of fibration to strong functor: Given a 1—cell in ConstFib(X) between morphisms of
fibrations given by contextual actions, part of this data is a functor F': Y — Y'. It suffices
to show that this is a strong functor. The strength at X for this functor is provided by the
identity map on X @Y as seen in the fiber over X. Here themap 1: X 0Y — (X 0Y)
is not the identity and under F turns into a map 6 : X @ F(Y) — F(X ©Y) which is the
strength of F.

o [librational transformation to strong transformation: A transformation in ConstFib(X) has
as part of its data an ordinary transformation. It suffices to show that it is strong which
is a consequence of the fact that the transformation of the total category is natural at the
particular maps which provide the strength.

2.4 2-limits and datatypes
Given two X—structural actions Y and Y’ their product is an X—structural action given by:

Xoy,Y) =(XoY,X0Y").

Thus the 2—category of StrAct(X) has finite products.
Also StrAct(X) has arrow categories, and so is cartesian closed. It is the ordinary arrow category
with the tensor action

s 10f
X0 —=Y)=X0Y —— X0V

The strength natural transformation for a functor into this arrow category gives a commutative
square which expresses the strength of the natural transformation.

StrAct(X) does not have equalizers. If H is the equalizing functor of two functors of this 2—
category F,GG :Y — Y’ then certainly H o I = H o G as functors. However, taking the equalizer
as functors will not do as this equalizer category need not be closed to the X-action.

Not only must H equalize the functors but also the composite must agree on the strengths and
it is possible that H have a non-trivial strength (consider the pullback of the identity functor with
an arbitrary functor expressed as an equalizer). This means that the equation

0r; F(0n) = 0q;:G(0n)

must hold. This does not hold in general with a structural action.

Thus, the 2—category of StrAct(X) does not have all weighted limits.

By contrast, of course, the 2—category of fibrations (with morphisms preserving cleavage) cer-
tainly has equalizers and preserves the products and arrow categories of contextual actions under
the embedding. This is also true of the underlying functor to Cat. This means the full 2-embedding
to ConstFib(X) preserves these limits. This allows us to regard this 2—category as a “completion”
of the latter in which equalizers exist.

For the discussion of datatypes, inserters are needed [Co91] and so it is pragmatic to work
in the 2—category ConstFib(X) to determine the form datatypes take in this setting. When one
unwinds the various diagrams involved for a contextual action, the universal diagram which must
be satisfied by a linear natural number object, for example, takes the following form:

X01—190 xondDs xonN

‘A 10N
y y
C 7 XoC

Note how it differs from the form suggested by Paré and Romén [PR89] as the context appears
not only on the top line but also on the bottom where the properties of being a context become
crucial.

Perhaps the most important single inductive datatype is the list datatype. To construct lists a
strong tensor product in Y is needed: the universal diagram for lists will then be:

X o TL2nil x ¢ 1ist(4) Locons X o (A@list(A))

K 410 (Bans 10 k)
; ;

C 7 Xod

Similarly one may define diagrams for other inductive datatypes. As datatypes have hardly
been studied in these settings it is of no small interest to wonder what properties they satisfy: an
area we barely broach here!

3 Contextual Categories

A situation of particular interest arises when a category X has a structural action on itself which
is, furthermore, strong with respect to itself. Such categories are essentially the subject matter of
this section. To be reasonable, the strength transformations must satisfy various coherence condi-
tions. When these are written out they are very similar to the conditions governing a symmetric
tensor product. There are, however, two major differences: first the associativity map is not an
isomorphism, and second the unit (called an empty context) does not have an identity action on
either side. This, of course makes it necessary to write down explicitly many coherence diagrams
which would otherwise be implied.
A category with a strong contextual action on itself has a natural transformation:

0, X0(Y0Z) —(X0Y)0(X0Z)

such that e =0 _p_;e@eand d; 100 _5_;0_5_=6_,_;d©d. Rather than dealing with the strength
of _,_ we may work with the linear strengths in each argument:

a, =0 10e: X0oY0Z)—(X0Y)0Z
to be thought of as an associativity map and
co=0p;e01: X0Y0Z)—=Y0(X0Z)
to be thought of as a symmetry map. We note that #_,_ can then be reconstituted as:
0o =dilDag;c,=d;10cy;ap.

Thus, in axiomatizing such a setting we may organize the axioms around the linear strengths of
associativity and symmetry. Our first major test of the axiomatization will be to recover the
strength of 6_g_ from its linear strengths (see 3.4).

3.1 The definition
A contextual category is a category equipped with a structural action

0 XXX —=X
and an empty context T and natural transformations:

a, + XoYoZ)y—=(XoY)oZ
¢, + XoYoZ)y—=Yo(X0Z)
lift : X —=ToX
read : XOT—X

Satisfying a number of coherence diagrams. These we shall organize according to their source:

Empty context: (Written so as to suggest the tensorial counterparts)

TOT Xo(Toy) o (XoT)oY
lift read L Olift fead 01
T T XOY=——=X0Y
lift;read = 1 (5)
1o lift;ay;readl = 1 (6)
Symmetry:
XoYoZz) Y oZz)
\ (X @Z/ (X @Z/ \ (X0 7)
€3 Co 1 (7)
dic, = d (8)

Elimination, duplication and lifting:

X lift o x lift
lift lift \\\\\
TOX——T0(TOX)
lift;d = lift; lift (9)
1 = lift;e (10)

Transpositions:
XoWoz YWhixoxoyoryoz)l2%xoyoXo (Y 02)
to gy 10 ag

(XoY)oZz (XoY)o(XoY)oZ)

d

A0B0o2z) L2%Gd 40 A0BoB02) 2% A0 BoA0(BO2))

Co co; 10 (1O ¢y)

Bo(AoZ) BO(BO(A0(AD2)) 5=+ BO(A0(BO(ADZ)))

1od;d 12cy

ap;d = 10d;d; 100010 ag (11)
coslodid;10e, = 10d;d;10cy;¢0;10 (10 ¢y) (12)
Bistrengths of the action:
X0 (Y 0(A0B)) 10cq X0 (A0 (Y 0B))
Co %)

Y 0(X 0(A0 B) Y 0 (X0 4)0 B) (X0 A)0(Y 0 B)

19a,

This ensures that 6_;_ is a contextual strength (see 3.4).

coil@agico, = 10cyia (13)

10

Strong transformations:

Xoyladt Xo(ToY) Xo(YoT)laread x oy
lift ° " read
To(X0Y) (XoY)oT
1Tolift;e, = Tift (14)
ap;read = 1@ read (15)

Elimination of strengths:

XovozsnaXxov)oz XoYoz)fay o(Xo2)
el loe
€ €
YOZ YOZ
ag;e@l = e (16)
cp;le = e (17)

Duplication of strengths:

XoYoz) —4 . Xo(X0(Yo2) XoYoz) —4 . Xo(Xo(lYo2)
Go L ag;ag Co L@ egieo
XoY)oZ — = (XO(X0Y Z YoX0oZ) — Yo X0o(X0Z
(X0Y)07Z = (Xo(XoV)e 0(X07) 1=3 Y 0(X0 (X0 2)
d;1Qagia, = ap;dol (18)

d;1Qcpiep, = cp3ld (19)

11

Associativity of strengths:

XoY o(Zow)) %o (XoY)o(ZoW)

10 a, o

Xo((Yoz)ow) XoYoz)ow

(Xoy)oz)jow

Qo a1

Making a, “associative” (although not invertible).

Xo(Yo(ZoWw) —%2 . Yo(Xo(ZoW) L2% yo(Xoz)ow))

10 a, o

Xo((Yoz)ow) Xoyoz)ow

) @@1
L@ agiag;ap 01 = agjag (20)
LOagiagico 01 = ¢p310ag;ag (21)

Symmetry of strengths:

Xo(Yo(ZoWw)—2 yo(Xo(Zow)—L2% v (Z0o(Xow))

10 a, o

Xo((Yoz)ow) YozZ)o(Xow)

Co

Xo(Yo(Voz)—2% . xo(WVo(oz) Co Vo(XoYo2z))

cy 10e¢,

Yo(Xo(VoZ) Yo(Vo(XoZ)

oL VoY O (X 02))

12

L@agico = cp31Qcqsa0 (22)

LD epicp;l Qe = co3l0eq;cn (23)
Lifting of strengths:
Xov At 10 (x oY) Xovydit .10 (X oY)
ift 01 Go 1.0 lift ‘e
(ToX)0Y Xo(ToY)

Note that the second of these diagrams has already occurred to ensure the strong naturality
for lift.

lift;a, = lift ol (24)

3.2 Contextual modules
It is reasonable to ask what a contextual action of X must look like. We shall call such actions
X-modules: a module is an action, as before, but is equipped not only with elimination and
duplication but also a lifting, associativity, and symmetry map. The diagrams which must be
satisfied are all the diagrams above less (5) and (15) (which would demand that T is in the module).
The strong functors between modules must now preserve the additional structure we have intro-
duced. This gives three further diagrams (that is including elimination and duplication strength)
to be satisfied by the strength transformation of the functors:

Associative strength:
X0 oF2) 2200 | px oy oz)

Qo Flag)

(XoY)oFZ)

13

Symmetric strength:
X0 (Y oFZz) L200r | p(x oy 0 2)
Co Feg)

Y o(XoFrZ2)) FY o (X02)

10 0p;0F

Lifting strength:

FxO)—tt 1o pex)

0
F(lift) F

F(ToX)

A functor (with strength) which satisfies the normal strength conditions together with the above
will be called contextually strong.

It is clear that we may now form a 2—category of X-modules, contextually strong functors, and
strong transformations:
Proposition 3.1 Contextual actions, contextually strong functors, and strong transformations
form a 2-category Context(X).

Again the only point that needs comment concerns the composition of contextually strong
functors. Clearly we may define

(F,0r)0(G,0c) = (FoG,0q;G(0F))

and we leave it as an exercise for the reader to check that the five strength requirements are satisfied
by the composite strength.

Strength has the interesting property of transferring onto the Eilenberg-Moore category of
strong cotriples. Suppose (5,¢,6) is a contextually strong cotriple on an X-module Y. Then an
arbitrary object of the Eilenberg-Moore category is v : Y — S(Y') satisfying the usual diagrams.
However, this gives

v v [4
Yoy 2o s(xov)=xoy —2% x o 8(v) 2 s(x oY)

which is also a coalgebra, since the following commute:

14

Xov XoyLov . xosv)bs . s(xov)

1o 1o 10 S(v) S(10w)

Xosy)de, xoy X0 S(Y)mX % S(S(Y))%.S(X 2 S(Y))
05 . 05 S(6s)

S(X0Y) S(X0Y) - S(S(X0Y))

In each case, the bottom diagrams commute by the strength of €, 6, and the top diagrams commute
because v is a coalgebra (and 6 is natural, in the case of the right-hand diagram).
Further this is actually a contextual action:

Lemma 3.2 Context(X) has the Eilenberg-Moore construction for cotriples.

The requirements (16)—(24) can retrospectively now be seen as arising out of the demand that
a, and c, be the linear contextual strengths for the functor - @ _. Certainly, we have:

Lemma 3.3 In a contextual category X for all objects Y and Z the following functors with
strengths are contextually strong: (-0 Z,a,) and (Y @ _, ¢y).

We now wish to establish that _ @ _ has a contextual strength. We shall accomplish this by
proving the following proposition:

Proposition 3.4 A bifunctor F': Y1 xY9 — Y between X—contextual categories has a contextual
strength 0 if and only if

e [has linear contextual strengths fst : X 0 F(Y1,Y;) — F(X©Yy,Y2) andsnd : X 0 F(Y1,Y5)
— F(Yl,X %) Yg),

e The linear strengths commute:

X0 (Y 0F(A,B)) 19 snd X 0 F(A,(Y 0 B))

Co fst

Y 0 (X 0 F(A, B)) Y 0 F(X 0A,B) F(X 0 AY 0 B)

1o fst snd

Furthermore a natural transformation between bifunctors a : F(X,Y) — G(X,Y) is strong if and
only if it is strong with respect to the linear strengths.

This immediately explains the requirement (13) as this will give

Corollary 3.5 In a contextual category 0_,_= d;1 Q0 c,;a, is a contextual strength for the con-
textual action.

15

Proof (of 3.4). We start by assuming that 6 is a contextual strength for F: our task is to show
that

fs 6 F(1,¢e)

X 0 F(A,B) = F(X2A,B)=X 0 F(A,B) -, FIX0AX0B)—— F(X0A,B)
will be a contextual strength. By symmetry this will allow us to conclude that snd : X © F(A, B)
— F(A, X © B) will be a contextual strength. To establish the first direction of the equivalence it
will then only remain to show that these linear strengths commute.

We need to check the five conditions for strength:

Elimination strength:

fst; Fe,1)=0p; F(1,¢e); F(e,1)=0p; Fe,e) = e.
Duplication strength:
fst; F(d,1) = 6p;F(l,e); F(d,1)=0Fp; F(d,e)
= Op; F(d,d;1 0 e;e)
Op; F(d,d); F(1,1 0 e;e)
;1000 F(1,10€); F(1,e)
;10010 F(1,e);0p; F(1,e)
= d;1 fst;fst

Associative strength:

1 ®fSt;fSt;F(a®71) = 10 (GF;F(lve));eF; F(lve);F(a@l)

10 0p;0p; F(1,10 €); F(1,€); Flag, 1)
= 10 6p;0p; (a®,1®e €)
= 100p;0p; Fay,e;e)
= 1060p;0p; F(a, a®,e®1 €)
10 0p;0p; F(ag,ap); F(1,e 15¢)
ag;0r; F(1,€)
= ag;fst

Symmetric strength:
1o fst;fst; Fep, 1) = 100p;0p; F(cy,1); F(1,10 €;¢)
= ;1000 F(1,10¢€); F(1,€)
co; 10010 F(1,e);0p; F(1,€)
= ¢g; 1 O fst; fst

Lifting strength:

lift; fst = lift; 0p; F(1,¢€)
F(lift, lift; e)
F(lift, 1)

Note the use of (10) in the last step.

16

It remains (for the first direction) to show that the linear strengths so defined commute:

losnd;fst = 10 (0p; F(e,1));0r; F(1,¢€)
1000 F(10e,e)
10 0p;0r; F(cgie,co; 10 e)
Co; 10 0p;0p; Fe,1 0 e)
o3 10 (05 F(1,€)); 0F; F(e, 1)
= ¢, 1O fstysnd.

For the converse we now assume that we have the linear strengths which commute and will
establish that

4
X 0 F(A,B) — F(X © A, X 0 B)

d snd fs
= XOFAB) = X0(X0FAB) —20 X0FAX0B) —— F(X0A,X0B)

is a contextual strength. Again we must check the five conditions governing strength. Before we
do this we record a manipulation which will be used repeatedly:
10 0p;0r = 10 (d;10snd;fst);d; 1 snd;fst
= d;10 (12 (d;1©snd;fst)); 1 © snd; fst
Glo(lod;lo(lo(losnd)); 1o (1ofst); 1o snd;fst

= 1od;d; 10 (1o (1osnd)); 10 cp; 1@ (10 snd); 1O fst; fst

= 10d;d;10c¢y;10 (10 (1 @snd;snd)); 1 fst; fst
which uses the fact that the linear strengths commute to reexpress the process of moving contexts
inside .
Elimination strength:

Op; F(e,e) = d;1@snd;fst; Fe,e)

d; 1@ snd;e; F(1,e)
d;e;snd; Fi(1,e)

= €

Duplication strength:

;1000 = d;10d;d;10ep;10 (10 (10snd;snd)); 1o fst; fst
= d;d;10d;10¢y;10 (10 (1 @snd;snd)); 1@ fst; fst
d;d;10d; 10 (10 (1 @snd;snd)); 1o fst; fst
d;d; 10 (1od); 10 (1o (1 snd;snd)); 1O fst; fst
= d;d;1o(1osnd); 10 (10 F(1,d));1 0 fst; fst
= d;1osnd; 10 F(1,d);d; 10 fst; fst
= d;1osnd; 10 F(1,d);fst; F(d, 1)
= d;1 @ snd;fst; Fi(d,d)

17

Associative strength:
100 0r; Flag,ap) = 10d;d;10cp;10 (10 (10snd;snd)); 1o fst; fst; Flay, ap)
= 1od;id;10cy; 10 (10 (1 @snd;snd));ap; 1 @ F(1,a,);fst
1o did;1 0 cpyap;1 0 (1 0snd;snd); 1O F(1,ap); fst
1od;d; 10 cyia0;1 0 ay;1 @ snd;fst
ag;d; 1 snd; fst
= ap;bp

Notice the use of the transposition identity (11) to bring the associative map out in the
penultimate step.

Commutative strength:
100 0p; Fcy,cp) = 10d;d;10cy;10 (10 (1 0snd;snd)); 1o fst; fst; Feg, cp)
= 10od;d;10¢cy;10 (10 (1 @snd;snd));en; 10 (10 F(1,¢));
1 @ fst; fst
= 10d;d; 10 cp;e0;10(10¢y); 10 (1@ (10 snd;snd));
1 @ fst; fst
= ¢310d;d;10cy;10 (10 (1 @snd;snd)); 1o fst; fst
= ¢ 100 0F
Notice the use of the transposition identity (12) to bring the symmetry map out in the
penultimate step.
Lifting strength:
lift; d; 1 @ snd; fst
lift; lift; 1 @ snd; fst
lift; snd; lift; fst
= F(1,1ift); F(lift, 1)
= F(lift, lift)

lift: 6

Note the use of (9) in the first step.
The last statement of the proposition is straightforward to verify. a

It would be strange indeed if the re-expression of a bistrength in terms of its linear strengths
(and vice-versa) did not yield the bistrength itself. We now verify that these transitions are indeed
inverses of each other. First we assume we are given the bistrength and reconstitute it from its
components:

0r = d;1@ snd;fst
d; 10 (03 F(e,1)); 03 F(1, €)
;10 0p;0p; F(1 Qe e)
Op; F'(d; 10 e, d;e)
= OF

18

Next we assume we have the linear strengths and verify that extracting the linear strengths from
the bistrength that we build does give back the original linear strengths:

snd = 0p; F(e, 1)
d; 1@ snd; fst; Fi(e, 1)
d; 1 snd;e
d; e;snd
= snd
fst = 0p; F(1,¢)
d; 1 fstysnd; F(1,€)
d; 1 fst;e
d; e; fst
= fst.

For example, in the 2—category Context(X) the trivial category 1 of one object and one map
(the identity) with the trivial action is a final object. Functors from it pick out objects as usual

and have strength
e: X0F(1l)— F(X0l)=F(1),

thus the above result is just the analogue of the classical result concerning bifunctors.
As another example, if Y is an X—module, that is a category with an X-contextual action, then
for each object Y € Y there is a strong contextual functor

Y':'X—Y;: X —-X0Y
with the strength given by
a,: X' oY X)=X'0oXoY)=[Y](X'0oX)=(X"0X)0Y.
This is called a (contextual) line.

3.3 Actional functors and transformations
A functor between two contextual categories F: X1 — X is actional in case it is equipped with

two maps:
T:T—F(T) and 7, F(X)0F(Y)— F(X0Y)

such that the following diagrams commute:

F(X)o F(Y)—5—F(Y) FX)o F(Y) 4. F(X)0 (F(X)0 F(Y))
To T(e) To 1o 17,
F(X0Y) FIX0Y)) FIX0(X0Y))

19

POt 10 Px) F(X) o T—read | pix)

F(lift) T lor F(read)

F(T © X)+—F(T) 0 F(X) F(X)0 F(T)—=F(X 0 T)
F(X) 0 (F(Y) 0 F(2)) —2— (F(X) 0 F(Y)) 0 F(Z)

10717 LO 170

. F(XoY)o2)

FX oY o2z)
0FY)0 F(Z) —2— F(Y)0 (F(X)0 F(Z))

F(X)

10717 LO 170

FX oY o2z) FY o (X02)

A natural transformation a : F' — G between actional functors is actional in case the following
diagrams commute

T F(A)o F(B) e a G(A) © G(B)
/ \ - G
F(T) - G(T) F(AQ B) - G(AQ B)

Proposition 3.6 Contextual categories, actional functors, and actional transformations form a
2—category Context.

The only difficulty concerns composition. The actional maps for a composition are defined
exactly as expected:

- G(F(T))
-t e 2 ey

7_GoF

G(F(X)) 0 G(F(Y)) —— G(F(X 0 Y))
_ G(F(X)) 0 GUR(Y)) — GUR(X) 0 F(Y)) 21 G(p(x oY)

20

It is then necessary to check the above diagrams for these maps. This is a straightforward calculation
which utilizes the naturality of the actional maps.

Of course, actional functors are the analogue of monoidal functors. The proof that this compo-
sition works is analogous to the proof for monoidal functors.

The importance of actional maps between contextual categories is precisely that they allow
the transfer of the modules. This means that the modules sit above the 2—category Context as a
2-fibration and Context(X) is the fiber above the contextual category X. We shall be content to
prove:

Proposition 3.7 There is a 2-functor (_)* : Context — 2—Cat (the 3—category of 2—categories)
which takes

X +— Context(X)

giving a 2-indexed 2—category.
Proof (partial sketch!). We shall restrict ourselves to defining the way the actional functors induce
2—functors.

Let F: Xy — X be a 1-cell of Context. To define
F~ : Context(X;) — Context(Xy)

Define the Xp—action on an Xy-module by Xo 0 Y = F(Xo) © Y. We need the lift, associativity,
and symmetry for this action. The elimination, duplication, and symmetry map are unchanged.
However associativity and lifting must be modified:

F(X)o(P(X]))0oY) —E F(Xi0X))oY

a T0 01
= F(X1) 0 (F(X})0Y) — (F(X1) 0 F(X})) 0 Y —— F(X10 X})0 Y
1ift’
Y — F(TYoy

lift TQ1
=Y —TQY ——FT)O0Y.

In order to check that this is a contextual action we need to check that the twenty two applicable
diagrams still commute! However, those that we have not modified (that is those only involving
elimination, duplication, and symmetry) will automatically still commute. This leaves (6), (9),
(10), (11), (13), (14), (16), (18), (21), (22), and (24). These are straightforward to check. We shall
do (6) to illustrate:

FX)o(F(TYo z) Les (F(X)o F(T))0 Z T @1 FXoT)oZ

lo(rol) (lorol F(read) © 1

F(X)oz Lot | pxyo(Toz) e (F(X)oT)oz 2ad0l, px)oy
We must show that this assignment preserves the composition. Further, we must show how

actional transformations give rise to 2—cells and preserve composition. This is left as an exercise
for the reader. a

21

Now Context does not have all weighted limits and colimits but it does have some:
Proposition 3.8 Context has Eilenberg-Moore and Kleisli constructions for cotriples.

The Kleisli construction is of course not the standard one as we must close up (the standard
construction) by the action and ensure the presence of the required actional transformations. To
get a precise feel of this category is beyond the scope of the current article.

To show that the Eilenberg-Moore category exists is more straightforward. It suffices to indicate
why the contextual structure, action and transformations, carries over to the coalgebras.

Note that if ,

X -2 S(X) and X' —— §(X7)

are coalgebras then

, vov ’ i ’
XoX —— S(X)o S(X)— S(X 0 X')
is easily seen to be a coalgebra too. It is then easily checked that, as the contextual transformations
can be pulled through the actional maps, the category is contextual.

3.4 Storage in contextual categories
Suggestively we shall adopt the convention, in any contextual category, of writing !'(X)=X 0 T.
Notice that we have:

TX) -~ TTx)=x0T 2 Xo@rmoT) 2 (xXonoT

and
read

'(X)—>X XoT — X.

Lemma 3.9 In any contextual category (1(_),¢,6) is a cotriple.
Proof. We must show that &; 1(e) = 6;¢ = 1 and §;6 = &; (6).
The first counit identity ¢; !(€) = 1 is (when translated) (6) above.
For the second counit identity we have:

xoTlft x o (To) e (xoT)oT

\ 1 @ rea Coad

XoT

where the left triangle is (5) and the right triangle commutes as read is strong — (15) above.
Finally for the associativity of comultiplication we have:

22

Xo0T

1 ¢ lift

1 o lift

X @T(T)W 0!
o (C) ay 01
T(T(X))—’u@nft)@l' (X0 1(T)) PIGE He

where the cell (A) commutes using the naturality of lift to obtain the equality:

lift; lift = lift: 1 0 lift

and the fact that lift is strong (14) which says lift; a, = lift ©1; these allow

lift; 1 @ lift; a,,

lift; lift; @,
lift; lift @1

HTCH(x)

Squares (B) and (C) commute by naturality, (D) uses the associativity pentagon (20). 0

So, in particular, the storage cotriple gives rise to a module. It would be particularly satisfying
if the storage cotriple were actional. This would mean that the Eilenberg-Moore category would
also be a contextual category. Unfortunately this is not the case in general (a counterexample is
provided by the free linear category on a set of types). However, it is actional whenever the storage

cotriple has its comultiplication an isomorphism.

[WO4].) This makes the “stored types” a full reflexive subcategory:

(This condition has been studied by Wadler

Proposition 3.10 Any contextual category, in which the storage comultiplication is an isomor-
phism, has an actional storage cotriple.

Proof. Define

lift
T—T0T

read @1
XoT)o(YOoT)—— X0 ((YOT)

23

2 xov)oT.

The only difficulty in the proof is the requirement concerned with reading:

10 7;7; ! (read) = read
We may perform the following manipulation:

1O T1;7y; H(read) = 10 lift;read ©1;a,;read 01
= read 01;1 @ lift; ay; read 01
= read®l

where the last step uses (6). However, we are left to prove that read@l =read : (X O T)O T
— X @ T which in general is not the case. However, we can now use the assumption of the
proposition to force this for prefixing these maps by the comultiplication in each case is the identity.
Thus, as the comultiplication is assumed to be an isomorphism these maps are, by assumption,
equal. a

Remark 3.11 ()

In developing the theory above, we have had one model always in mind, which is in a sense the
converse of this section, viz. in a monoidal category with a “storage” cotriple !, we may define
an action via X Y = ' X ® Y. The reader might like to verify that this is indeed a contextual
category. (For definiteness, one could take the setup of either [BCS92] or [BBPH].) As we shall
not need this here, we shall leave the details of this verification to such readers. a

Remark 3.12 (Modules and fibrations)

As before it is the case that Context(X) does not have all weighted limits. As before we therefore
would like to be assured of a completion in which all these limits do exist. Again it is reasonable to
look for a fibrational completion for these modules. However, for the moment we shall leave this as
an exercise for the reader! Instead we shall now consider coherence for contextual categories, via a
study of proof circuits for these categories. a

4 The context calculus

It must be obvious by now that the structures we have been studying are very similar to Girard’s
approach to unifying classical and linear logic [G93]: context variables are “classical” and general
variables are “linear”. This is represented by a morphism C' @ G — A; the position C' before
the @ is “classical”, while the position G after © is “linear”. In the remainder of this paper we
shall develop this idea, representing it by sequents I'; Il - A, where I is a finite (including empty)
sequence of formulas, and II is either empty or a single formula. Note that in a sense the role of
@ is taken by the semicolon in the sequent. We shall present the sequent calculus, outline the cut
elimination theorem for it, and sketch the interpretation of the calculus in contextual categories.
We begin with the sequent calculus—as suggested above, this is a fragment of Unified Logic,
and is intended to illustrate the way in which contextual categories handle the features of ! and
7, and how they handle the interaction of classical and linear behaviour. The sequent rules are
listed in Table 1. There are some derived rules that one might otherwise expect in this system.
These are listed at the bottom of the Table. We note that it is clear that the context rules amount
to making the @ carry the structure of the semicolon; the (funct) rule essentially says that © is
functorial. In the (funct) rule it is understood that if either II; is empty, it will be replaced with

24

Axioms:
A)
Structure Rules:

I,A,AT:IIF B

T AT EB o)
AR B
A B e
Cut rules:

A;IIFA T3ARB

TR g (e
Unit Rules:
I, FA
rrralh
Context Rules:
IA;BEC
raoprc (OF)
Derived Rules:
m (d€7‘ — aac)
I, T;II+FA
Tara (P
1Braos 9D

I,T1F B

BLEL LSRN
A aEg ()

T,A, B, I+ C
T,B, AT I FC

(exch)

A;YHEA T,ATGIIEB

t
rasTarg e

o FT (TR

;XA AIIEB R
Ty anraos (00

L THA
T alT)

FO;H()'_A Pl,Hll—B

To.TullooTL F Ao B Jumel)

Note that II, X, or II; is either empty or a single formula.

Table 1: Sequent rules for the context calculus

T in IIg @ IIy. The unit rules essentially amount to making the “unit” T carry the structure of an
empty linear formula, that is, an empty formula after the semicolon. Note that T is not the unit
for the @, which would require a constant carrying the structure of an empty classical formula,

that is, an empty formula before the semicolon.

5 Interpretation

We shall interpret a sequent Ay, Ag, ..., Ay; B F C as a morphism A; © (A2, @ (...(A4, © B)...))
— (. In this way then, the (i¢d) axiom is just the identity morphism A — A. The structure
rules are given by the defining natural transformations for contextual categories: contraction is
induced by the duplication natural transformation d: X @Y — X @ (X © Y'); thinning is induced
by the elimination natural transformation e: X @Y — Y'; exchange is induced by ¢: X 0 (Y © Z)
— Y 0 (X © Z); and dereliction is induced by read: X © T — X. The “linear” cut rule (lcut) is

b
simple composition (and functoriality of ©): given Y 0 Z 2 B and X @ B — C, the lcut of

X0Q !
frgis X0 (Y 0Z) 7% X » B —= C. The “classical” cut rule (ccut) is given by the context

f
natural transformation ag and composition: for Y 0 i> Band X 0 (B Z)— C, the ccut of
_ X 0 0o X0(3072) ! ,
LgisXoYo(S0Z) —X0(Y0S)0Z)——— X0 (B0 Z)— C. (TL)is

an identity interpretation, in the sense that we interpret the bottom formula by the interpretation
of the top formula (we use T to interpret an empty linear formula, and we use the absence of @
to interpret an empty classical sequence of formulas). (TR) is the identity on T. The (©L) rule
is also an identity interpretation; (1) is interpreted as the identity morphism. (®R) is equivalent

to (0l), but one can easily check that its interpretation may be given as follows. For f:G © S

Go(So a
— A,g: D@ P — B, (OR) yields G@(S@(D@P))%G@(S@B)%(G@S)@B

foB
——— A @ B. The functoriality rule (funct) is given by functoriality of ¢, together with ¢, a to

group the brackets according to the sequent syntax. Given f;:G; @ P; — A;, for ¢ = 0,1, (funct)

¢ a fo@ f
vields Go0 (G1O(PoOP1)) —— Go0(Po@(GLOPL)) —— (Go0 Po) (G110 Py)) ——"1 Ag0) Ay .

In a weakly distributive category with storage we may also interpret the context calculus,
essentially X 0 Y = ' X ® Y, as we shall see in a sequel.

6 Cut elimination

The cut elimination process for the context calculus is quite straightforward, first eliminating all
linear cuts. There are a few points to illustrate.

o (Permuting (lcut) and (contr)): If the contraction occurs on the left of the cut, it cannot be
the cut formula that is contracted, so permuting the contraction past the cut is simple:

A, A A AT F B A A AALTIEB T;BEC
AANTIFB TiBFC I,A, A, A AT FC
I,A,A,ALTFC I,A,A,ALTFC

If the contraction occurs on the right of the cut, again the cut formula is not contracted:

IA AT BFC ATIFB T, A AT BFC
ATIFB T,ATGBFC . T, A AT, ATFC
AT, AILFC AT, AILFC

26

o (Permuting (ccut) and (contr)): Again, permuting an instance of contraction on the left of
the cut is simple:

A A AN YSFB ANAAANSFB LB IGIFC
AAANSEB T,BIGIEC [LA A A A ST IEC
LA A AN, S TGIEC LAA A S TSI C

If the contraction appears on the right and the cut formula is not the formula contracted, the
permutation is similar to the case above with (lcut). If the contraction appears on the right
and involves the cut formula, then permuting the contraction introduces a second cut, as
illustrated below. Note the use of numerous instances of exchange and contraction indicated
by the double lines.

A A T, A AT:IFB

T.A.AT:1I- B A,E"A F,A,A,E,F’;HI—B
A:YFA T.AT:IF B IAS A S TITE B
) 9 44y) =3
LA, S, TIF B LA, S, T:10F B

o (Permuting (lcut) and (der)): An instance of dereliction cannot occur on the right of a linear
cut; if it occurs on the left, permuting the cut is straightforward:

A;AF B A;AFB T;BFC
NA, FB ILBFC T.AAFC
A A FC A A FC

o (Permuting (ccut) and (der)): If the instance of dereliction occurs on the left side of a classical
cut, the dereliction may be removed (notice that the (ccut) rule has an instance of dereliction
built in):

A:AF B
AA; B T,B, I IIEC — AN;AEB T,B, T ITEC
LA AT:IFC T.AATCIFC

If the dereliction occurs on the right, the permutation is straightforward:

T,B,T:1FC ASFB T,BIGIFC
ASFB T,BI'0; FC _ I,A, S, T5T0F C
A5, T0;, FC A YT 1, FC

o (Permuting (ccut) and (thin)): The only interesting case is when the cut formula is introduced
by thinning: note the use of numerous instances of thinning indicated by the double line.

11+ B /
AiSEA TATGIEB [LIGIF B
T,A S, TG F A T,A S, T510F B

e (Permuting cuts and (exch)): These cases are completely analogous to the cases above.

27

o (Permuting (lcut) and (ccut)): There are two cases, depending on where the cut formula

appears.
A;YEA T AT:;BEC A, I B-C &;C+D
LA S T:BFC $CFD _. ASFA ® 1, AT:BFD
®.T.AS.T-BF D ®.I.AS.T-BFD
A;YHEA TAT;BEC o:IIFB T,AT;BFC
®: 11+ B A T:BFC . ATHA4 LA, &1 FC
LAY T, &1 FC LAY T, &1+ C

o (Permuting (lcut) and ©): Note that if A @ B is introduced by the @ rules and is the cut
formula, the cut must be linear. We illustrate such a cut, and also the permutation step if
A @ B is not the cut formula.

AYFA ATIEB T,A;BEC AYFA T,A;BFC
ALY AN IIFAOB T;A0BEC — AITE B A" X;BFC
LAY, A ILEC LA, AITEC

;A T;BED A;II-B TI;BFD
A;lT-B TS, I;BFAQD — Y EA I, A1 D
LY, I',A;IT- Ao D LY, I',A;IT- Ao D

e (Permuting (ccut) and ©): Here A @ B cannot be the cut formula.

I,B,A:DF C ASFB T,B,A;DFC
AXEB ILBiAODFC A%, A, DFC
T,A,S:A0DFC T,A,S:A0DFC

To show that these cut elimination steps are valid in contextual categories, we have some commu-
tative diagrams to verify. For example, permuting (ccut) and (thin) amounts to the commutativity
of the outer rectangle of the following diagram; the inner cells prove its commutativity.

X0 (A0 B) loe X0B
Lo(gol) 1
Xo(YoZ)oB) loe X0B
10a 1o(e 1) 10e
X0 (Y 0 (ZoB)) loe X0 (Zo B)

28

Similarly, permuting (ccut) and (contr) amounts to the commutativity of the outer rectangle of
the following diagram; again, the inner cells prove its commutativity. The essential condition is the
commutative diagram corresponding to equation (11) in the definition of a contextual category.

Do(s0P)—A poosor) 22029 poDe(so(se P)) A2 Do(so(Do (S0 P))
“ (11) (D@ S)o (Do (S0 P))
loa go1
(Do S)oP d (Do S)o (Do S)o P) Ao (Do (S0 P))
1oa
gol Ao((DoS)oP)
oo
Ao P A2 (AQP)

The remaining diagrams will be left as an exercise.

7 Proof circuits

We now introduce proof circuits for the context calculus. The basic links are given in Table 2,
with corresponding rewrites in Table 3. The following comments ought to be taken in conjunction
with the figures in these Tables. First, as in [BCS92] we have a set of n-ary “duplication” nodes,
which take a single wire (which may not be in “linear position”, which is to say that it may not
be the right-most wire in the graph) as input, and produce an unordered set of n output wires, all
bearing the same label as the input. In Table 2 we illustrate only the binary case of this duplication
node. In Table 3 we have a number of rewrites involving duplication; although we illustrate only
the binary cases, the reader ought to keep in mind that there are similar rewrites for the n-ary
versions. (Actually, one could make do with a binary node only, and use the binary rewrites to
simulate the n-ary nodes, but it is simpler to use n-ary nodes.) Note that one rewrite is written as
an equality: this emphasizes that the outputs are considered as unordered.

We shall not give a net criterion for graphs created from these links; rather, we shall suppose
that nets are created inductively, following the sequentialization steps illustrated in Table 4. We
have no boxes for the circuit links, though this might be a simple way to keep track of the linear
and classical wires. Apart from this—admittedly crucial—matter, these circuits are quite similar

29

4 B o B B
A0B A B A A
5 5
It

able 2: Links for proo circuits

to ordinary proof nets, and so the usual acyclic and connectedness criterion would apply. But it is
vital to ensure that the distinction between classical and linear wires is maintained. This can be
done by giving the wires “weights”, but we have not done this in order to keep the graphs simple.
Rather than box every rule to guarantee correctness, we prefer to box none. Curiously, if we were
to add linear connectives, such as ®, it seems we would need boxes for these, dual to the usual
situation with linear logic proof nets. The resulting situation has a close connection with Milner’s
action structures, a connection we hope to explore in a sequel. Unlike [BCS92] we have no need
for thinning links, since we have just the one “tensor” operator. In a full calculus that allowed a
dual context “tensor” © (corresponding to ? in linear logic), we would need to introduce thinning
links.

Note that in these circuits we can have no “empty wires”—if the linear position in a sequent
is indeed empty, we use a T wire to represent this. In this way, the (T L) rule is embedded in the
notation, and so does not appear in the sequentialization steps. Wires can be “grounded” (i.e.
disappear): this is indicated by a node that has only one wire attached to it. Note that we have no
node or link for the exchange rule; instead we shall let wires cross each other where appropriate.
These crossings may be moved about, treating the circuits as string diagrams. Such a crossing may
not involve the rightmost wire, which is likewise blocked from other “classical” operations such as
duplication and thinning. This should be clear from the sequentialization steps of Table 4.

It is of interest to note that dereliction is formally very similar in this circuit presentation to
thinning. Indeed, it is a form of “linear thinning” for T, corresponding to the “classical thinning”
for any formula, in that it allows a T wire to be grounded in linear position, just as thinning allows
any wire to be grounded in classical position.

To illustrate these circuits and the rewrites, we show that in the category of circuits the com-
mutative diagrams in the definition of contextual categories do indeed commute. This shows that
this circuit category is indeed contextual. In fact it is the free such contextual category. This can
be generalized as in [BCST], presenting the free contextual category generated by a given set of
components (essentially a given graph) together with a set of equivalences, as a suitable category
of circuits. Note that in several instances the relevant morphisms correspond to equal circuits,
because of our handling of exchange as wire crossing and of the circuits as string diagrams (see
Figure 3 for diagrams 12 and 13 for example).

Then, as in [BCST] we can derive a decision procedure for equality of maps in the free category;

30

A B AQB Ao B

A A A
f— <= ==
A A A A |A A A A A A A A A

Table 3: Reductions and expansions for proof circuits

two morphisms are equal if their expanded normal forms are equal. In fact, in this case this is
quite trivial due to not having thinning links, and essentially amounts to the traditional technique
of Kelly-Mac Lane graphs, as shown in [B92], where the coherence question for various theories of
monoidal categories was solved using this approach.

31

A
c c
A1 | L R R
“ﬂ‘ IR
@F — | kT B = | rasrsarc |
! | rBrinrc |
c| c
E A || AoB

Ao B

Table 4: Sequentialization

32

We begin with the circuits for the morphisms d, e, a, ¢, lift and read:

lift = read =

ToA A

33

Diagram 1: d;e =1

Diagram 2: d;10e=1

Figure 1: Commutative diagrams

34

Diagram 3: d;d=d;1 0 d

w ay

Diagram 8: d;c=d

Figure 2: Commutative diagrams

Diagram 13: 10 c;a=¢;10 a;c

Figure 3: Commutative diagrams

36

Diagram 14: lift = 1 ¢ lift; ¢

)

&
|
@?@

Diagram 15: a;read = 1 @ read

Diagram 17: ¢; 10 e =¢e

Figure 4: Commutative diagrams

37

8 Future work

In a sequel to this paper we shall extend the structure of context categories to include a tensor
product, and then dualize this to obtain categories with context and cocontext (and tensor and
par). We can sketch a part of this here, but full details must await the sequel.

If we were to add a tensor product to a contextual category at the very least we should like it
to be a contextually strong bifunctor . This introduces the strength maps:

0+ X0oT —T

o X0V 0Z) —X0Y)0(X0Z)

The former map has to coincide with elimination (to satisfy the elimination diagram). For the
latter we may again break this down into two components:

fst=0oz: XO(YQZ) —(X0Y)®Z

snd=0yg_ X0 Y ®7Z)—=Yo((X0Z)

In addition, we shall see that it is desirable that these two components are isomorphisms. For
example, we can recapture the categorical semantics of tensor and !: contextual categories with a
contextually strong tensor product whose linear strengths are isomorphisms are very nearly “linear
categories” in the sense of being monoidal categories with a storage operator ! (as defined more
or less in [BBPH] or [BCS92]).

The diagrams which arise from the assumption of contextual strength include those which make
these natural transformations strong, for example:

R L
Xovy—2". x o v eT) Xovy—L2Y . x o (Tay)
ull fst ul snd
(XoY)eT TR(X0Y)

There is a similar diagram to show that the associative isomorphism of the tensor is strong. These
diagrams are used in the proof of the next lemma. Observe that T is trivially a comonoid so that
X @ T is a comonoid by strengthening the comultiplication of T and using e : X @ T — T as the
counit.
Proposition 8.1 In any contextual category with a contextually strong tensor product if Y is a
comonoid then X 'Y is a comonoid.
In other words the category of comonoids of a such contextual category is a module. This allows
the observation:
Corollary 8.2 In any contextual category with a contextually strong tensor product in which T is
a (commutative) comonoid, the storage functor ! (_) carries objects onto (commutative) comonoids.
To dualize these notions, it becomes necessary to consider the structure of a fibrational fork (this
notion is due to Benabou—we learned of it from Bart Jacobs). The point then is that a category X

38

is bicontextual if it is a bimodule over itself, where here a bimodule in general must have both an
X-—contextual action and a X’—cocontextual action (with X’ being a cocontextual category). The
strength and costrength maps X 0(Y O X') — (X 0Y)© X' are identified (analogous to the weakly
distributive case, where the weak distributions are simultaneously strength and costrength). The

result gives a fibrational fork. Once tensor and cotensor (“par”) are added we recover the notion
of a weakly distributive category with storage [BCS92].

References

[BBPH]

[B92]

[BCS92]

Benton B.N., G. Bierman, V. de Paiva, M. Hyland “Term assignment for intuition-
istic Tinear logic”, M. Bezem and J. F. Groote, eds, Proceedings of the International
Conference on Typed Lambda Calculi and Applications, 1992, Springer Lecture Notes in
Computer Science 664, 75-90.

Blute, R.F. “Linear Logic, Coherence and Dinaturality”, Theoretical Computer Sci-
ence 115 (1992) 3-42.

Blute, R.F., J.R.B. Cockett, and R.A.G. Seely “! and ?: Storage as tensorial
strength”, to appear in Mathematical Structures in Computer Science, (Preprint, McGill
University, 1992, revised 1994).

[BCST]

[Bo94]

Blute R.F., J.R.B. Cockett, R.A.G. Seely, and T.H. Trimble “Natural deduction and
coherence for weakly distributive categories”, to appear in Journal of Pure and Applied
Algebra, (Preprint, McGill University, 1992, revised 1994).

Borceux, F. Handbook of Categorical Algebra, Cambridge University Press, 1994.

[Cag6]

[Co91]

[CS91]

[GO3]

[M93]

[PRS9]

[Se89]

Cartmell, J. “Generalized Algebraic Theories and Contextual Categories”, Annals of
Pure and Applied Logic, 32 (1986), 209-243

Cockett J.R.B., D.L. Spencer “Strong categorical datatypes I”, in R.A.G. Seely, ed.,
Category Theory 1991, Montreal, CMS Conference Proceedings, 13 (1991), 141-169.

Cockett, J.R.B. and R.A.G. Seely “Weakly distributive categories”, in M.P. Fourman,
P.T. Johnstone, A.M. Pitts, eds., Applications of Categories to Computer Science, Lon-
don Mathematical Society Lecture Note Series 177 (1992) 45-65. (Expanded version to
appear in Journal of Pure and Applied Algebra.)

Girard, J.-Y. “On the unity of logic”, Annals of Pure and Applied Logic 59 (1993)
201-217.

Milner, R. “Action calculi, or concrete action structures”, Mathematical Foundations
of Computer Science, Springer Lecture Notes in Computer Science 711 (1993), 105-121.

Paré, R. and Roman, L. “Monoidal categories with natural numbers object”, Studia
Logica XLVIII (1989) 361-376.

Seely, R.A.G. “Linear logic, *-autonomous categories and cofree coalgebras”, in J.
Gray and A. Scedrov (eds.), Categories in Computer Science and Logic, Contemporary
Mathematics 92 (Am. Math. Soc. 1989).

39

[W94] Wadler, P. “A Syntax for Linear Logic”, Springer Lecture Notes in Computer Science
802 (1994), 513-528.

40

