Suppose also that $(\beta_{AB})_{\kappa_{AB}} (\beta_{AB})_{\kappa_{AB}} (\beta_{AB})_{$

DEFINITION 2. If we reverse the directions of the natural transformations k_{fB} , $k_{A'g}$, k_{fB} , $k_{A'g}$, $k_{A'g}$, k_{AB} , k_{AB} in Definition 1, and replace the triangle equalities with $(\kappa\alpha)\cdot(\beta\kappa)=\kappa$, $(\alpha\lambda)\cdot(\lambda\beta)=\lambda$ then F of is a Lax adjunction. (We modify the "usual coherence conditions" suitably, of course.)

PROPOSITION
$$\Pi \times \Pi \xrightarrow{\frac{V}{\Delta}} \Pi$$

are lax 2-functors, as above. Furthermore,

$$v \rightarrow R \Delta$$
 , $\Delta \rightarrow L \delta$.

REMARK Analogously, I (and equality, if we wish to include it) is also a Rax left adjoint to the suitable "diagonal", and V is a Lax right adjoint. However, D has some of the properties of both types of weak adjunction; this is discussed in [S2].

The core of the proof is given by the following table:

	<u>v</u>	<u>&</u>	2
ı ^F '	V-expansion	identity	&-expansion
ıG	identity	&-expansion	>-expansion
$\gamma^{\mathbf{F}}$	v-perm. + v-red.	identity	&-reduction
γ ^G	identity	&-reduction	>-reduction
κ	VI	&I	Ic + I&
λ	VE	&E	&E + ⊃E
k _A †g	identity	&-reduction	>-reduction
ℓ _{fB}	V-perm. + V-red.	identity	&-reduction
LA'g	V-permutation	&-reduction	>-reduction
k _{fB}	V-reduction	identity	&-reduction
α ·	V-expansion	&-reduction	-
β	V-reduction	&-expansion	-

The triangle equalities are precisely the principle (R), (and the "coherence