Categorical Semantics for Higher Order Polymorphic Lambda Calculus

R. A. G. Seely

Journal of Symbolic Logic, Volume 52, Issue 4 (Dec., 1987), 969-989.

Your use of the JSTOR database indicates your acceptance of JISTOR’s Terms and Conditions of Use. A copy of
JSTOR’s Terms and Conditions of Use is available at http://www.jstor.org/about/terms.html, by contacting JSTOR
at jstor-info@umich.edu, or by calling JSTOR at (888)388-3574, (734)998-9101 or (FAX) (734)998-9113. No part
of a JSTOR transmission may be copied, downloaded, stored, further transmitted, transferred, distributed, altered, or
otherwise used, in any form or by any means, except: (1) one stored electronic and one paper copy of any article
solely for your personal, non-commercial use, or (2) with prior written permission of JSTOR and the publisher of
the article or other text.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Journal of Symbolic Logic is published by Association for Symbolic Logic. Please contact the publisher for further
permissions regarding the use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/asl.html.

Journal of Symbolic Logic
©1987 Association for Symbolic Logic

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2001 JSTOR

http://www.jstor.org/
Tue Jan 23 16:42:52 2001

THE JOURNAL OF SyMBOLIC LoGiC
Volume 52, Number 4, Dec. 1987

CATEGORICAL SEMANTICS FOR HIGHER ORDER
POLYMORPHIC LAMBDA CALCULUS

R. A. G. SEELY

Abstract. A categorical structure suitable for interpreting polymorphic lambda calculus
(PLC) is defined, providing an algebraic semantics for PLC which is sound and complete. In
fact, there is an equivalence between the theories and the categories. Also presented is a
definitional extension of PLC including “subtypes”, for example, equality subtypes, together
with a construction providing models of the extended language, and a context for Girard’s
extension of the Dialectica interpretation.

§0. Introduction. Since its development in the early 1970’s by Girard [1972] and
independently by Reynolds [1974], the polymorphic lambda calculus (PLC) has
been the object of increasing study. In this paper I shall define a categorical structure
suitable for interpreting PLC, thus providing a smooth, algebraic semantics for
PLC. The usual soundness and completeness theorems are valid for this semantics;
in fact, we shall show an equivalence between the theories and the categorical
structures. Furthermore, I shall present a definitional extension of PLC to include
“subtypes”, the most important of which are equality subtypes, and a construction
on the categorical structures which provides a suitable semantics for the extended
language. A bonus of this construction is the creation of a type of natural numbers,
thus providing the context needed for the Dialectica interpretation given by Girard
[1972]. Finally, in order that the semantics presented here may be compared easily
to that of Bruce and Meyer [1984], I shall describe the model of closure operators in
Pw, due to McCracken [1979] and Scott [1976], in some detail.

Girard introduced PLC in [1971], [1972] to extend Godel’s Dialectica interpre-
tation to analysis; this origin is illuminating because it suggests we regard PLC as a
higher order version of Godel’s system of functionals. If for simplicity we ignore the
natural numbers component of these systems, Godel’s system reduces to typed
lambda calculus and PLC is just a higher order typed lambda calculus. (The term
“polymorphic” has two connotations: one is just “multi-sorted” or “typed”, and the
second refers to the ability to pass types as parameters in term and type expressions,
as we shall see.) This means that PLC permits “type abstraction” as well as the usual
first order lambda abstraction. For example, for any type o we have the identity
function for g, Ax € ¢ - x; abstracting with respect to ¢ gives a “universal identity”
function A o - Ax € a - x. To these two kinds of lambda abstraction correspond two

Received May 29, 1986; revised October 1, 1986.

© 1987, Association for Symbolic Logic
0022-4812/87/5204-0008/$03.10

969

970 R. A. G. SEELY

kinds of “function type”: the identity for ¢ is of type ¢ o o (or), while the universal
identity is of type [To - a > a.

Independently, Reynolds [1974] introduced the second order fragment of PLC as
an illustration of the type structure of programming languages which are typed (to
allow syntactic checking) and yet which allow the formation of such “uniform”
constructions as the universal identity considered above. In fact, PLC is very
powerful: all provably total recursive functions can be represented in PLC,
provable, that is, in higher order arithmetic (second order, for Reynold’s fragment)
(Girard [1972]). Nevertheless, it is simple enough to be a useful prototype for
studying properties of programming languages embodying the principles Reynolds
described, such as HOPE and ML (Burstall et al. [1980]; Milner [1984]).

Using the Howard formulae-as-types isomorphism, we can look at PLC in
another way: the types of PLC are formulae of intuitionist higher order type theory
(or propositional calculus), and the terms are derivations (of their types, with
assumptions as the types of free variables). Under this interpretation [Jo - o[a] is
universal quantification: if one has a derivation a[a] of o[«], with appropriate
conditions on o, then A « - a[«] is the corresponding derivation of Vo - o[a]. It was
via this idea that Girard proved the syntactic form of Takeuti’s conjecture from
normalisation for PLC [1971].

Probably the most elegant formulation of the semantics of lambda calculus is via
cartesian closed categories (Lambek and Scott [1986]). The purpose of this paper is
to describe the corresponding categorical semantics for PLC, with the intent of
achieving a similar conceptual simplification of other known semantics, such as that
of Bruce and Meyer [1984]. Indeed, from the considerations above, a good idea of
what to expect is evident. For we start from the well-known equivalence between
typed lambda calculii and cartesian closed categories (Lambek and Scott [1986]).
To permit the higher order function types []a - o[a], the categorical structure must
also be “complete” in some sense, i.c., must allow the formation of “arbitrary”
products (or at least “uniformly defined” ones). Of course this is impossible (see
Reynolds [1984], for example). The way around this dilemma is to interpret the
categorical structure in an appropriate “universe”: a “PL category” should be an
internal complete cartesian closed category in some other category than the category
of Sets (see §2.5).

Another approach to this notion is via the analogy with type theory: the semantics
for type theory is given by toposes (Lambek and Scott [1986]), and so to get PLC we
need only replace the notion of entailment (used to construct toposes) with the
richer structure of deductions as given in PLC (see §2.4).

Some remarks concerning presentation: Girard’s original system [1972] was a
higher order type theory, unlike his system in [1971] or Reynolds [1974], which
only contain a second order fragment of the full system. I have retained the full
higher order feature, since the categorical semantics seem more natural in this
setting: see, for example, the description of the closure operator model in §3.
Whereever “functions types” occur, I have also included “product types”; in the case
of “orders” this introduces new orders, but does not essentially alter the content of
the theory. (Girard’s system had product types, but not product orders.) Girard’s
system also had sum types and a type of natural numbers: I completely omit the
former, and leave a discussion of the latter to §7.

CATEGORICAL SEMANTICS FOR LAMBDA CALCULUS 971

A more important modification of the original Girard/Reynolds system has to do
with the equality rules or axioms: in addition to the usual reduction (or B) rules, I
also require expansion (or #) rules. So, for instance, every term of a function type is a
function, and every term of a product type is an ordered pair. This is standard from
the categorical viewpoint, where it amounts to admitting the two “triangle
equalities” which define an adjunction. (See the book by Lambek and Scott [1986],
for instance.)

An early version of the semantics defined in this paper was developed in Seely
[1979], amounting to “internal PL categories”, as in §2. The current presentation
owes much to conversations with F. Lamarche, whom I thank for his helpful
insights. In particular, the construction of §6 is based on a generalisation due to
Lamarche [1985] of the “Freyd cover” construction. This work was done while
I had the help of a grant from the Fonds F.C.A.R., Québec. A preliminary
announcement of these results appeared in Seely [1986a], [1986b]. I would also like
to acknowledge the suggestions of the referee, especially with regard to the
amplification of my introductory remarks.

§1. Polymorphic lambda calculus. To begin with, I shall give an informal
definition of the type theory or polymorphic lambda calculus used in the paper,
leaving the most important technical points until later. (The lesser points will be left
to the reader.) However, I should note that, again following categorical precedent, I
shall define what is meant by “a” (not “the”) polymorphic lambda calculus; what is
usually meant by “the” polymorphic lambda calculus is the free one (on some
collection of generators).

Roughly speaking, PLC consists of four sorts of objects: orders, operators, types,
and terms. The orders describe the kinds of objects the theory is talking about: one
kind of object is the types, and these make up the order 2; another kind of object is
functions which assign types to types, and these make up the order Q2. Operators
are just functions from one kind of objects to another kind; in particular, operators
from some kind of object to types (i.e., A — Q) are themselves called types (with a free
variable of order A). (In this paragraph, there is a definite blurring of the distinction
between functions from A to B and objects in B4, but I think it can be useful at times
~ to think of an expression with a free variable as the corresponding closed functional
expression, just as is done in the phrase “the function x? + 1”.) Finally, the types
carry a structure allowing for the creation of products and function types, as
described in the Introduction; the terms are the objects of the individual types.
Notice that a term may have free variables of two different sorts: term variables of
specified types, and operator variables of specified orders. (For example the term
AB-ixea-Ayef-xhasno free term variables of any type, but it has a free type
variable a (of order Q). Itis of type[If - « > > a.) I hope these remarks will make
the intended interpretation of the syntax below clear; a more precise version of these
remarks is the essential content of the semantics of §4, in terms of the categorical
structures of §2. (See especially the remarks in 1.2, 2.4, and 2.5.)

DEFINITION 1.1. A PL theory ¥ consists of three collections of objects: orders,
operators, and terms. Each operator and each term has an “arity”; thatis to say, each
operator is of a certain order, and may have free variables in it ranging over certain
orders. Similarly, each term is of a certain type, and may have free variables in it

972 R. A. G. SEELY

ranging over certain types. (A type is a special kind of operator.) Each of these
collections may have a given set of constant symbols, with appropriate arities for
operators and terms. Furthermore, they must be closed under the following rules:

(1.1.1. Orders) 1 and Q are orders; if 4 and B are orders, then 4 x B and Q4 are
also orders.

(1.1.2. Operators) In the following, “c € A” means o is an operator of order A; the
rest of the arity is left unspecified for simplicity.

For each order, there is a countable set of variable operators (called
“indeterminates™).

*el. TeQ.

Ifo,7eQ theno Antandeo o1 Q.

If o € @ and a is an indeterminate of order A,thenYx e A-cand[lae 40 € Q.

(xI)If 6 € A, 7 € B, then (0,7 € A x B.

(xE)If 6 e A x B, then n,6 € A, n,0 € B.

(PI) If o is an indeterminate of order 4 and ¢ € Q, then [0 € A: 6] € Q4.

(PE)If 1€ A, 6 € Q4, then (1) € Q.

DEFINITION 1.1.3. A type is an operator of order Q.

(1.1.4. Terms) In the following, “a € ” means a is a term of type t; the rest of the
arity is left unspecified for simplicity.

For each type, there is a countable set of variable terms (called “variables™).

(ThH*eT.

(=2I)If a e, x a variable of type o, then Axeg-aco > 1.

(oE)If aeo>1,beo,thenad) e

(rn)Ifaeo,bert,then<a,b)ec A T

(AE)Ifaeo A t,thenmyae o, nyae.

(XI) If ais an indeterminate of order 4,0 € Q, 7 € A, then Iy, ., . € o[t/a] Yu
€ A - 0. When clear from the context, we shall denote this term by I, or even by I;in
particular, if b € 6[t/a], then I(b) e Ya € 4 - 0.

(XE)If ae o o p, a an indeterminate of order A which is not free in p nor in the
type of any free variable in a, then Vae A-ae(Fae A-0) o p.

(I11)If a € o, an indeterminate of order A which is not free in the type of any free
variable in a, then Ao A-ae[Joe 4 - 0.

(IIE) If ae[lae A-a, 1€ A, then a{t} € [t/a], where o[t/a] is ¢ with 1
replacing a. _

(1.1.5. Equalities) In addition to statements of the form “a € 4, “a € ¢”, (the latter
only if “o € Q” has been derived), the PL theory T will also contain equations, i.e.,
statements of the form “o = t” and “a = b” (the former only if “c € A” and “r € A”,
the latter only if “o € Q”, “a € ¢”, and “b € ¢”, have been derived.) T may contain
certain equations as (nonlogical) axioms. In addition, ¥ must contain all the usual
equality rules of reflexivity, symmetry, transitivity, substitution, and change of
bound variables or indeterminates. (The variable binding symbols are ¥, [, [:], A4
and V for indeterminates, and A for variables.) Furthermore ¥ has the following
rules.

(1.1.6. Equalities for operators) Using the notation of §1.1.2:

(Ired) t=*fortel.

(P red) [a € A: 6](z) = o[t/a].

CATEGORICAL SEMANTICS FOR LAMBDA CALCULUS 973

(Pexp)o =[ae A:a(x)].

(x red) n,<{0,t) =0, n,{0,7) = 1.

(x exp) 0 = {(m 0,7,06).

(1.1.7. Equalities for terms) Using the notation of §1.1.4:

(Tredja=*forae T.

(o red) (Ax € 6+ a)(b) = a[b/x].

(o exp) a=Axeo-a(x).

(A red) n,<a,b) = a, n,{a,b) = b.

(A exp) a = {ma,n,a).

(Xred) (Va e A.a)I(b)) = a[t/a](b).

(Xexp) If fe(Xae A-0)>pthen f = Vae Adixea- f(Ig,., ().

(This should be thought of as f = Vae A(f - I).)

(ITred) (Aae 4 - a){z} = a[t/a].

(ITexp) a=Aoe A-ala}.

1.2. REMARKS. (1) When the order (respectively, type) of an indeterminate
(variable) is clear from the context, we will frequently omit it when using the
indeterminate (or variable) binding symbols, or alternately we might indicate it by
the use of a subscript, as in [Ja - (x © «) or Ax, - a. (Note in the former, a« € Q is
implied by forming o = a.)

(2) The restrictions in (3, E) and (I]I) are just the usual restrictions familiar from
first order logic: for instance A « - x, is not well-formed, which is just as well, for it
would then give a term of type []a € Q - «, in general not a desirable thing. On the
other hand, A « - Ax, - x is perfectly harmless, being the “universal identity” term of
type [e - (2 2 o).

(3) In §5 we shall construct PL theories from certain categories, which will have the
property that all operators and terms will be “stratified”, in the sense below. In order
that the construction generate an equivalence, we shall impose that condition now
on PL theories. (However, if the reader is unhappy with this restriction, it may
be ignored—then our construction will just give an adjunction, which in practice is
sufficient for our purposes.)

So, in forming operators ¢ A 1, ¢ O 1, 6(1), {0, T), wWe shall require that the same
free indeterminates appear in ¢ and in t. (This may be accomplished by using
“dummy” indeterminates, if necessary.) Similarly, in forming terms a, we assume
that the types of a and of all free variables in a have the same free indeterminates; in
forming a(b) and <{a, b) we suppose a and b have the same free variables. (Again, this
may involve the use of “dummy” variables or indeterminates.) However, we shall
not consider dummy indeterminates as possible violations of the restrictions in (}.E)
and ([]I): for example, in (I]I) « may occur as a dummy in a free variable of a, in
which case it would then no longer occur free (even as a dummy) in A . a. (A similar
approach to first order logic may be found in Seely [1983].)

(4) Although from a syntactic viewpoint stratification may seem unnatural, it does
result in giving a PL theory the following structure: we have a “base-universe” of
orders and operators, and over each order, we have a “fibre” filled with all the types
whose free indeterminate ranges over the given order, and all the terms of those
types (whose free variables also range over such types.) (Note that with products, we
can assume without loss of generality that an expression has exactly one free

974 R. A. G. SEELY

indeterminate or one free variable.) There are two ways of going from one fibre to
another: substituting an operator for an indeterminate, and quantifying with ¥ or [,
which replaces an indeterminate of order A x B by one of order B. Note that the
fibre over 1 consists of the closed types. It is precisely this kind of structure we shall
abstract in defining a PL category in §2.

(5) In §4, we shall interpret operators as maps in a certain category. It will be
convenient for this purpose to suppose each set of indeterminates has a canonical
well-ordering, and that in a well-formed expression, indeterminates are chosen from
each appropriate order according to these well-orders. The intention is this: if o, «,
€ A, we shall interpret the operator a, as the identity on A4. If one were to write the
expression a, in isolation, there is no reason to suppose it should be interpreted
differently; it is only in contexts such as {a,,a,» that «, and «, have different roles:
contrast this with {a,, a,), for instance. However, minor technical problems arise if
we say o, and «, have the same interpretation when they stand alone, but different
ones when together (but clearly {a,,a,> should be the identity on 4 x A, whereas
{ay,0) should be the “diagonal” map A — A x A). So we adopt a “variable-
labelling” convention to avoid this problem. Of course, ideally we should dispense
with variables and indeterminates completely, and give a variable-free and
indeterminate-free presentation of PLC. This is essentially what PL categories
amount to: “the basic idea of categorical logic is that a logical theory has an intrinsic
existence independent of its presentation, and that this existence is best represented
by a category” (Seely [1982]).

§2. PL categories. We assume familiarity with the basic notions of category
theory, e.g. Mac Lane [1971].

DEFINITION 2.1. A PL category (G, S) consists of:

(i) a category S with finite products, a distinguished object 2, and exponentiation
of the form Q4 for A in S (precisely, for each object A4 of S, there is an object Q4 so
that Homg(B, 24) =~ Homg(4 x B, Q), naturally in B), and

(ii) an indexed category G over S satisfying:

(a) for each object 4 in S, Obj(G(A4)) = Homg(4,), and for each morphism
f:A - B, G(f) acts as Homg(f,) on objects (so G(f) is defined by composition);

(b) for each object A in S, G(A) is a cartesian closed category, and for each f: A4
— Bin S, G(f) preserves the cartesian closed structure; and

(c) G is “weakly complete and cocomplete”: for each object C in S, the canonical
indexed functor x¢: G - G€ has left and right adjoints Y.c = k¢ 1.

2.2. REMARKS. (1) For more on indexed categories, one may consult Paré and
Schumacher [1978]. However, in view of condition (a), one may view G as a functor
S°P — Cat, where Cat is the category of (small) categories, functors, and natural
transformations. For C in S, G€ is then the functor defined by G(4) = G(4 x C),
and k¢:G — G€ is the natural transformation defined by kc(4) = G(rn): G(A4)
— G(A x C),form: A x C - A the projection. For f a morphism of S, it is usual to
write f* for G(f) when G is clear from the context.

(2) The effect of G is to give a categorical structure (externally) to the object Q
of S. In fact, the Yoneda lemma implies that in a PL category, there will be
morphisms T:1 -0, A, 2:QxQ2-5Q, Y., [Ic:2°—>Q which induce the

CATEGORICAL SEMANTICS FOR LAMBDA CALCULUS 975

structure on G for objects. For example, if g, 7: A — Q are objects of G(A4), then
srnt=4T%0x050

is their product. The morphism k¢: Q — Q€ inducing the external k. always exists—

it is the “constant” (or K-combinator) g+ ix - 0.

DerFNITION 2.3. A functor F:(G,S)— (G',S’) of PL categories consists of a
functor F,:S — S’ preserving finite products and exponents of the form 24, and an
S-indexed functor F,;:G — F¥G' which preserves cartesian closedness and weak
completeness and cocompleteness.

Here F£G’ is the indexed category over S defined by F§G'(A) = G'(Fy(A)). Fy
preserving weak completeness means that for 4, C in S, the following must
commute:

m(4)
G(A4 x C) = G(A) G(A)
F(AxC) Fi(4)
m c(F“A)
G'(FyA x FyC) = G'TYFyd) ——2——— G'(F,A)

A similar condition holds for ..

The condition that F| be S-indexed is just to guarantee that F, commutes with f*;
viewing G and G’ as functors, this means F, is a natural transformation. PL Cat is
the category of PL categories and functors.

2.4. An analogy. For those who are familiar with the relationship between A-
calculus and cartesian closed categories, and more particularly between type theory
and toposes (see Lambek and Scott [1986]), the following analogy should make the
‘relationship between PLC (i.e. PL theories) and PL categories clear.

Type theory PLC Topos/tripos; PL category
type order object of base category
term operator morphism of base category
formula type object of fibre

derivation term morphism of fibre

The idea is that PLC may be regarded as type-theory-as-a-deductive-system (in the
Lambek and Scott [1986] sense), replacing entailment between formulae with
equivalence classes of derivations. (The equivalence relation is the smallest making
A aproduct, > an exponent, T a terminal object, and Y., [adjoints to k, i.e. infinite
sums and products.) In fact, ignoring the natural numbers object N of type theory,
the orders, operators, and types of PLC, as given §1, are exactly the types, terms, and
formulae respectively of type theory given in Lambek and Scott [1986]. (Actually,
Lambek and Scott include 1 and v in their formulae, which we omit, but that is
inessential.) The terms of PLC are exactly the derivations of type theory, were it to
be considered a deductive system.

However, when we get around to including a natural numbers object, there is a
significant breakdown in the analogy: each system would add N as a type, but that

976 R. A. G. SEELY

has a different meaning in the two systems. Similarly, when we consider equality
types, in PLC two terms will determine an equality (sub-)type, whereas in type
theory, two terms determine an equality formula—“term” has a different sig-
nificance in each system.

The analogy is clearest when considering the categorical structures, particularly
if instead of toposes we use triposes to interpret type theory. A tripos (Hyland,
Johnstone, and Pitts [1980]) is a modest generalization of the structure of the
subobject functor E°? — Poset, assigning to an object of a topos E, the poset of its
subobjects. A PL category generalises this notion, replacing poset structure with
categorical structure. There is an adjunction between the categories of type theories
and triposes, which is analogous to the adjunction between PLC and PL categories
(although I have presented these so that we actually get an equivalence).

From the categorical view point, the different ways type theory and PLC treat a
natural numbers object is clear: type theory adds N to the base category, whereas
PLC adds it to the fibres. Similarly, equality in type theory permits the formation of
generalised ¥, and [], adjoints for any f*, whereas equality in PLC amounts to
having finite limits (in particular, equalisers) in the fibres.

There is a small point that ought to be mentioned in connection with this analogy.
In type theory, it is well known that one can define L, v,3(our})intermsof A, o,V
(our []); this is not the case once one wishes to consider it as a deductive system. For
instance [Jox € Q2 - « is not an initial object (though it is a weak initial object), and [Jw
€Q [lae A-(0c > w) > wdoes not satisfy the adjointness conditions we require of
Yo € A-g.(Again, there is a “map” from each to the other, so they are equivalent in
the poset case, but not in general.) For example, the closure operator model of §3
does not have an initial object.

2.5. Internal PL categories. With the analogy of 2.4 in mind, one might ask “what
then corresponds to toposes, which are after all more natural than triposes”? The
answer is the following. (As this has no effect on the rest of the paper, I give only a
sketch here.)

An internal PL category is a PL category (G, S) in which Q is in fact an internal
category object (see Paré and Schumacher [1978]) and G =~ Homg(—,) (on mor-
phisms as well as on objects.)

This means S has certain pullbacks, in order to accomodate the structure on €,
that S has an object ©2; which is the internal representation of morphisms in G, and
that each morphism a: ¢ — 7in G(A) is given by a morphism 4 = Q, in S, satisfying
certain conditions. From the point of view of PLC, this would mean we had an order
Q, of terms, operators dom, cod: 2, — 2 (among others), allowing us to say that a
term a is an operator of order ,, that ais of type cod(a), and the free variable of a is
of order dom(a). Of course, 2, has much more structure, since it must account for all
the structure on terms. The point here is that this is very unnatural from the PLC
point of view: models of PLC just do not internalise the notion of “term”. This is a
fact, but not a logical necessity, however. (But see Remarks 3.9(2) and 7.6(2).)

Indeed, there is an adjunction between the category of internal PL categories and
the category of PL categories, analogous to that between toposes and triposes. The
reflection, creating an internal PL category from a PL category, is constructed

CATEGORICAL SEMANTICS FOR LAMBDA CALCULUS 977

analogously to that for toposes: enlarge the base category by adding a new object Q,
and all the other objects and morphisms required by G. (The objects required
include such things as an object 2, of “composable pairs”; the morphisms include
those such as dom and cod, required for the categorical structure on 2, as well as
morphisms 4 — ©; and A — Q,, induced by the morphisms and composable pairs
of morphisms in G(A), for example.)

Returning to the remarks in §0, we can see that the intended idea behind the
notion of a PL category is in fact the notion of an internal PL category. That is, one
should think of a PL category as being just a (weakly) complete and cocomplete
cartesian closed category €2; but this does not take place in the category of Sets, but
rather in some other category S. For technical reasons, I have taken the categorical
structure for out of S and placed it in the fibres given by G, but this is really not
crucial, in view of the adjunction discussed above. (Of course, it does keep the
structure of S as simple as possible.)

One might wonder why in the type theory case, the “internal” notion, topos, turns
out to be so natural. I would argue that, as a semantics for type theory, toposes are
intrinsically less natural than triposes (than PL categories whose fibres are posets, in
fact); however, since the order relation on Q2 may be defined equationally for type
theory (p < qif p > g+ = -T), one does end up with natural models as toposes.

2.6. Second order PLC. Since the higher order system is less familiar than the
second order one, a few remarks about the latter might be appropriate. Restricting
to a second order structure essentially removes the need for S to have any exponents:
at the most, one would expect exponentiation of “depth 17, giving objects like Q2> %,
but not Q9. However, since we are mainly interested in behaviour at the fibre level,
this means we will be considering fibres G, where C has no exponentiation. Hence
we might as well dispense with Q4 altogether. In the case of the free structure (no
other constants), S may as well then have the natural numbers as its objects, where
the number n represents 2". There is no alteration to make in the structure on G, but
note that in essence the only instances of Y, [] are 22 — Q (or the marginally more
general Q2" — Q which could be viewed as repeated instances of Q9 — Q), plus, if
there are any constant orders A other than Q, Q1 - Q.

From the “internal” point of view, what we are saying is that Q should be a
cartesian closed category in a suitable universe S, with a restricted (weak) com-
pleteness and cocompleteness condition giving only these instances of Y, and [].

§3. Closure operators as a PL category.

3.1. To illustrate the semantics defined in §4, we present a well-known model of
PLC as an example of a PL category, viz. the closure operators in 2. For basic
results about Zw as a model of the lambda calculus, and for proofs not given here,
see Scott [1976].

DEFINITION 3.2. K = {a¢Pw:] < a = a - a} is the subspace of 2w of closure
operators. K is the set of objects of a category K, whose morphisms f:a — b are f
e Pw satisfying f =bo foa.

REMARK. We use “¢” to denote set membership, as opposed to “e” which is part of
the arity of an operator or term.

978 R. A. G. SEELY

DEFINITION 3.3. Fora¢ K, T(a) = {x ¢ Pw: a(x) = x} is the set of fixed points of a.
Note that T'(a) is the image of a, and is a subspace of Zw.

ProprosITION 3.4. (1) K is cartesian closed.

(2) There is an object Q of K satisfying T(22) = K.

“PrROOF”. (1) 1 is the constant map with value w. b® is the map sending x to
b o x o a. (In Scott [1976], b® is denoted a o— b; we shall also write a = b for b and
a A bora x bfor Scott’s a X b.) The main fact about a > b is this:

LEmMMA 3.5. For a, b ¢ K, T(a > b) = Homg(a,b) = [T(a), T(b)] and T(a x b) =
T(a) x T(b), where for topological spaces X and Y, [X, Y] is the set of continuous
maps from X to Y.

(2) Qis Scott’s V = laAx.Y(y.x v a(y)).

DErFINITION 3.6. (1) For d ¢ K, G(d) is the category [T(d),K] of continuous maps
T(d) — K. This means an object of G(d) is a map d —» Qin K, and a morphism f:a
— b of G(d) is a continuous map f: T(d) » Pw satisfying f(t): a(t) - b(¢) is a
morphism of K for all t& T(d).

(2) For g:e —» d in K, G(g): G(d) — G(e) is defined by composition: g*(a) = ao-g
and g*(f) = f o g (using the isomorphism of 3.5).

PROPOSITION 3.7. (G,K) is a PL category.

“Proor”. (1) For d ¢ K, G(d) is cartesian closed; the structure is given “pointwise”
by the structure on K, and so is preserved by any g*.

(2) For c¢ K, there are morphisms), [1.: 2° — Q of K defined as follows:

Y. =Ax-Atec,y)y - {Lx(@O()
and

[1=4x-4y- At € cx(t)(y(2)).

c

For clarity, we have used some natural conventions here: Ax € a - e[x] means
Ax - e[a(x)], for an expression e[x] in which x appears, e[a(x)] being e with a(x)
replacing x. ¢,) are the pairing brackets for K, and A(x, y) - e[x, y] means
Az - e[n,z,m,z], where m,, 7, are the projections in K. Note that K has surjective
pairing, so there is no confusion here. (Remark in passing that [], is almost the S-
combinator; [] is in fact the combinator G of Barendregt and Rezus [1983].)

There are several routine things to check: that). and [], are continuous maps
[T(c),K] — K; that they extend to functors G° > G by composition (to define Y,
and []. for morphisms of G*(d), use the same definitions as above, interpreting the
“x” as a morphism of G*(d)); and that Y. — k. = [],. These are all straightforward;
the main point is this: We are thinking of the closure operators as “types”, and of
their fixed points as their “terms”. Given f: T(c) — K, we think of Y. .(f) as the
“sum” of all f(¢), t € c (i.e. t ¢ T(c)), and of [].(f) as the “product” of all f(¢), t e c:
T(f)="Ltec-fO" TI(f) =TIt e c- f(2)". So a “term” (fixed point) of X..(f)
ought to be a pair <t,y)», where tec and y is a “term” (fixed point) of f(¢): if
z =Y.f)(z) then z = {t,y)> where y = f(t)(y) and t € ¢, so that X (f)({t e c,y)) =
{t, f(©)(y)>. Similarly, if z = [].(f)(z), then z must be a function on T(c), so that
z(t) = f(t)(z(1), giving [1.(/)(2)(¢) = f()(z(¢)). Hence:

CATEGORICAL SEMANTICS FOR LAMBDA CALCULUS 979

LEMMA 3.8. Givence K and f¢[T(c),K]:

1) T(Z(f)> =Y teT(o)- T(S(1),

@ T<H(f)> = [[teT(e)- T(f(0)

The adjunctions Y., - k. — [], follow immediately.

3.9. REMARKS. (1) The intention in forming the PL category (G, K) is to interpret
types of PLC as closure operators and terms as fixed points. Indeed, G(1) = K, so
closed types are exactly the closure operators, and since Homg(1, a) = T(a), closed
terms are fixed points. However, in this structure the closure operators are also
playing the role of the orders. For a “leaner” order structure, we could have taken
the full subcategory of K generated from 1 and Q by the operations of x and Q' as
the base category instead of K.

(2) In fact K is an internal PL category, via the following trick (which is possible
since in this model, orders = closed types). Define Q; = Y.<{a, > € Q x Q-a > .
By 3.5 and 3.8,

T(Q,) = Y <a,byeK x K.[T(a), T(b)],

so a typical term of type 2, is just a triple {a, b, f: a — b). It is now easy to define id,
dom, cod, to show that 2, gives an internal category structure to €2, and to show that
G =~ Homg(-,) (on morphisms as well as on objects).

§4. Categorical semantics.

4.1. We now define what is meant by an interpretation of a PL theory ¥ in a PL
category (G, S). For simplicity we assume exactly one free indeterminate or variable
in any operator or term; since we have products, this causes no loss of generality. We
shall say an operator ¢ has arity A — B (denoted o: A — B)if o is of order B and its
free indeterminate has order A. (Of course, then ¢:1 — B indicates ¢ is a closed
operator.) Similarly a: ¢ — t denotes the arity of a term of type 7 with free variable of
type o. By our stratification condition (1.2(3)), a, g, and 7 all have the same free
indeterminate, of order A, say; in this case, we say a: ¢ — 7 is over 4. (Note that a
closed term of a closed type is a: T — g over 1.)

DEFINITION. An interpretation I: T — (G,S) of a PL theory T in a PL category
(G, S) is a function which assigns to each order 4 of T an object I(A) of S, to each
operator o: A — B of T amorphism I(s): I(4) - I(B)of S,and toeachterma: o —» 1
over A of T a morphism I(a): I(6) — I(z) of G(A). Note that I(¢) and I(t) are objects
of G(A), provided we require I(2) = Q (which we do).

DEFINITION 4.2. An interpretation I: T — (G, S) is a model of T if I preserves all the
(nonlogical) axioms of ¥, and satisfies the following conditions. (We follow the
notation of Definition 1.1.)

(4.2.1. Orders) I(1) = 1; 1(Q) = Q; I(A x B) = I(A) x 1(B); [(Q41) = Q'

(4.2.2. Operators) If o is an indeterminate of order A, I(a) =id: I(4) — I(A4);
I(*)=id:1-1I(T)=T:1->Q(asin 2.2(2)). Fora,1: A—> Q, I(c A 1) = 1(0) A I(7)
(as in 2.2(2)), and similarly I(c > 1) = I(0) o I(7). (Note these are product and

980 R. A. G. SEELY

exponentiation in G(I(A)).) For 6:B x A - Q, ae A, note that YaeA-o, [Jx
€A-0:B— €, and that I(0): I(B) x I(A) > Q. Let ¢ be the corresponding mor-
phism I(B) —» Q'™. Then I(Ya€ A+ 0) =¥, 6, I([la€ A-0) =Tl G:I(B)
— Q. (Of course, these are just Y, 4,(I(0)) and [1;4,(I(0)) respectively.)

(x1) I({o, 7)) = <I(0), (1))

(x E) I(n,0) = =y 1(0), I(n,0) = n,1(0).

(PI) I([o € A: 6]) = 6: I(B) —» Q'™ as above.

(PE) I(o(z)) = ev o {I(0),I(r)y, where ev: Q'™ x I(4)— Q is the standard
“evaluation” map.

Substitution is given by the functor G: for example,if 7: C > Aandg: B x 4 - Q,
let T = I(B) x I(z). Thenif o € A4, I(6[t/a]) = T*(I(0)): I(B) x I(C) — Q. (Of course
this is just given by composition.) Similarly, if a: v — ¢ over B x A, then I(a[t/a])
= 1*(I(a)): I(v[7]) = I(c[7]) in GUI(B) x I(C)).

(4.2.3. Terms) If x is a variable of type o over 4, I(x) = id: I(¢) — I(c) in G(I(A));
I(*) =id: T > T in G(1).

(=I) For a:v A 0 - 1 over A, I(a): I(v) A I(c) = I(z) in G(A), and I(Ax € 7 - a):
I(v) > I(6) > I(tr) = I(o = 1) is the corresponding morphism of G(A), given by
cartesian closedness.

(oE)Fora:v—o o1, b:v—oover A4, I(a(b)) = ev o {I(a), (b)) in G(A).

(A1) I(a, b)) = <I(a), 1(b)).

(AE) I(nya) = m1(a), I(n,a) = ny1(a).

(XI)Fora: B x A — Q,notethat i, 4,%.;4)(I(0))is the interpretationof Yx € 4 - o
with a dummy indeterminate o € A. I(Iy,., ,): 1(0) = Ky4)214)(I(0)) is the unit of the
adjunction } 4 k. If 7: C — 4, then

I(I)Za'a,t) = :E*(I(I)Za'a,a)): I(O’[‘L’]) - TETI(Z(X €A- 0->,

where 7,: I(B) x I(C) — I(B), so =¥ adds a dummy indeterminate of order C, in
effect.
(XE)Forv,p:B—>Q,0:B x A— Q,and a:v— ¢ D p over B x A (so that now v
and p have a dummy indeterminate o € A), note that
1(a): ky 4 (1(v)) = 1(0) > K104)(I(p))

in GUI(B) x I(A)). Then
IVae A -a):I(v)—»I(ZaeA -o) > I(p)

in G(I(B)) must be given by these correspondences:
KU (V) = 1(0) > k14 I(p)) in GU(B x A)),
ki aI(V) A I(0) > k1 (p)) in G(I(B x A)),
Z (1 ay(I(v)) A 1(0)) = 1(p) in G(I(B)),

1(A)

I(v) A I(ZA)(I (0)) > I(p) in G(I(B)),
I(v) - Ié)(l (o)) = 1(p) in G(I(B)).

CATEGORICAL SEMANTICS FOR LAMBDA CALCULUS 981

(We have used here the result, Frobenius reciprocity,

;(KA(V) AG)SV A §(0),

which is true for any PL category. This is equivalent to k, preserving exponentia-
tion, and since k, = n¥, this was guaranteed by Definition 2.1(ii)(b).)

(ITIH)Forv:B— Q,6:B x A — Q,a:v— oover B x A,thenvhasadummya e 4
and 1(a): k;(4(1(v)) = 1(0). Then I(Ao € A - a): 1(v) - [1;.4(I(0)) must be the corre-
sponding morphism under x 4 [].

(TIE) For v:B—Q, a:Bx A—>Q, a:v—>]laeA-0 over B, I(a):I(v)—
[0 (0)); I(a{a}): ky4(I(v)) = I(0) in G(I(B x A)) is the corresponding mor-
phism under k 4[]. For ©:C — A, I(a{t}) = T*(I(a{a})): n¥1(v) > I(c[7/a]) in
G(I(B x C)), where =,: I(B) x I(C) — I(B).

Substitution is given by composition: if a:v — g, b: p A ¢ — T over A, then

I(bLa/x,]) = 1(b) = (I(p) A I(a)): I(p) A 1(v) = I(p) A I(0) = I(1)

in G(A).

4.3. REMARK. The essence of 4.1 and 4.2 is that an interpretation / is given by what
it does to the constants of T. For the rest, I is extended canonically to all orders,
operators, and terms. I is a model if I respects the axioms of T. For the rest, the
canonical definition of I automatically respects the logical equalities of §1.1.5. We
summarise this in the next proposition.

PROPOSITION 4.4 (Soundness). If I: T — (G, S) is a model, then all the equality rules
of §1.1.5 are valid under I.

The proof of soundness is by now a standard procedure in categorical logic. For
example, similar results may be found in Seely [1983] for first order logic, Seely
[1984] for Martin-Lof type theory, and Lambek and Scott [1986] for A-calculus
and type theory.

4.5. In fact, the notions of 4.2 can be used to define a PL category (G(T), S(T))
from a PL theory : the objects of S(T) are orders of T; morphisms a: A — B of S(I)
are operators : A — B of T, modulo the equivalence relation given by the equations
of I; morphisms of G(I)(A4) are terms a: ¢ — t over A of I, modulo the equivalence
relation given by equations of I; o* is defined by substitution.

PrROPOSITION 4.6. (G(T), S(Y)) is a PL category.

PROOF. Again, the details are standard and straightforward. For example, we
show that for any 4 in S(Y), k,: G(T) — G(I)* has a left adjoint [],. Given Bin S(%),
o in G(I)Y(B) = G(T)(B x A), we know that : B x A - Qin T. Also, [(o) = [1«
€ A-0:B— Q, where o is a new indeterminate of order A. Given a:6 — 7 in
G(Y)*(B), i.e. a:0 >t over B x A, [Ia) = Aae A-a[x{a}]:[leeA-c>]lae
A - T over B, where x is a free variable of type [[¢ € A - o and a[x{a}] is a with x{a}
replacing the free variable of type o in a. The bijection

Ks(p) > 0 in G(T)*(B),
p— I;I(ff) in G(3)(B)

is given thus: For a: k,(p) — g over B X A,i.e.a: p — o where a € 4 is only a dummy

982 R. A. G. SEELY

inp,leta:p — [l 0)be Aawe A-a:p—[lee A-aover B.For b: p — [(o) over B,
let b: x4(p) — o be b{«}. That these are inverse is immediate from (Il red) and (I] exp).

PROPOSITION 4.7. There is a model I,: T — (G(ZT), S(T)). Moreover, given any model
I:T > (G,S), I factors through I,: there is a unique functor F;: (G(X), S(T)) - (G, S)
of PL categories so that F; o I, = I (with the evident definition of composition).

Proor. Briefly, I, sends each order, operator, and term to itself (or rather the
equivalence class containing it, in the case of operators and terms). F; is essentially
defined as I; this is well defined on equivalence classes since I is a model.

DEFINITION 4.8. (1) Mod(T; G, S) is the set of all models T — (G, S), for any PL
theory ¥ and PL category (G, S).

(2) For PL theories T, T, an interpretation ' — T is a model T’ — (G(T), S(T)).

(3) PLC is the category of PL theories and interpretations.

REMARKS. (i) It is easy to check that (2) is equivalent to the usual syntactic notion
of interpretation of one theory in another.

(ii) From 4.7 we have, for any PL theories T, T’ and PL category (G, S),

Mod(%;G,S) = PL Cat((G(T),S(2)),(G,S)).
PLC(T',T) = PL Cat((G(T'), S(T')), (G(T), S(})).

Moreover Mod(—; -)is functorial, contravariant in the first position, covariant in the
second, and these isomorphisms are natural in each variable.

DEFINITION 4.9. Two PL theories T’ and T are equivalent if the functors
Mod(T’,-) and Mod(Z,-) are naturally isomorphic. Equivalently, (G(T'), S(T')) =
(G(%),S(Y)) in PL Cat.

§5. Equivalences.

5.1. Given a PL category (G, S), we define a PL theory I(G,S) as follows: The
orders of I(G,S) are objects of S, and the operators o: A - B of I(G,S) are
morphisms o: A —» B of S. Qis Q, so types are morphisms 0: 4 > Q. Terms a: ¢ — 1
over A are morphisms in G(A). Equations are given by equality in (G, S).

In §1 we defined a PL theory as given by sets of orders, operators, and terms, sets
which had to be closed under certain operations and which had to satisfy certain
equations. It is of course more usual to treat these operations as rules for freely
generating the sets of orders, operators, and terms, and then impose the equations
on the freely generated sets. I have not done that, so that now it is not necessary to
worry about the “duplication” that would arise if we were to treat the orders,
operators, and terms of I(G,S) above as constant symbols, and then used the
formation rules to generate sets of orders, operators, and terms freely from them.
With our approach it is only necessary to add indeterminates and variables (which
are essentially unnecessary anyway!); the rest of the orders, operators and terms
already are present as appropriate objects and morphisms of (G, S), as indicated in
§4.2.

PRrOPOSITION 5.2. (i) T(G,S) is a PL theory.

(i) Any functor F:(G,S)—(G',S’) of PL categories induces a model T(G,S) —
(G,S'); in fact Mod(T(G,S); G',S) =~ PL Cat((G,S), (G',S")) (naturally in each
position).

CATEGORICAL SEMANTICS FOR LAMBDA CALCULUS 983

PROPOSITION 5.3. (i) For any PL category (G, S), there is an equivalence
& (G(T(G,9)),S(X(G,9)) > (G,S) inPL Cat.
(2) For any PL theory X, there is an equivalence
n: T - I(GEX),S®) inPLC.

(3) There is an equivalence of categories PL Cat ~ PLC.

ReEMARK We have defined the structure in PLC so that # is an equivalence of
theories, but a more usual approach would give only a conservative extension. Then
in (3) we would only have an adjunction between PL Cat and PLC. This would be
sufficient, however; see Lambek and Scott [1986], where such an approach is used
for type theory.

§6. Subtypes.

6.1. In view of the equivalence 5.3, it is sufficient to work in terms of PL categories.
However, we shall continue to refer to PL theories as well, in the interests of clarity;
our definitions and constructions will be informal in PLC, and more formal in
PL Cat.

DEFINITION 6.2. A PLS theory T consists of four collections of objects: orders,
operators (which include types), subtypes, and terms. The orders, operators (and
types), and terms are essentially those of a PL theory, except that terms now may
have subtypes in their arity. A subtype X has an arity which, in addition to the orders
of free indeterminates appearing in X, includes a type o (over the same orders).
Furthermore, X may have terms occurring in it, as we shall see below. We say such
an X is a subtype of ¢ (over the appropriate orders), or ¢ is the supertype of X, and
write X: co or 6: > X. X may contain a free variable of type o; if we wish to indi-
cate the occurrences of a term a in X, we shall use the notation X [a], as before. If
a term a is of subtype X: —o and has a free variable of subtype Y: 1, we write
a:Y c 1 - X < 0. Every type ¢ is a subtype g: < g; we write this as just . The key
new formation rule for subtypes is:

(=)Ifa b:Yct—X coover A are terms with the same free variable, then
E(a, b) is a subtype of 7 over A.

We have built the stratification into (=): note then, for example, if x,, x, are two
different free variables of type o, then E(x,,x,) must be understood to be an
abbreviation for E(n,{ x{, X,), m,{X;,X,), and is then a subtype of ¢ A ¢.

Subtypes are closed under the same rules as types (1.1.2), the supertypes being
given by the corresponding rules. For example, [[a € 4 - X: <[] € A - 6. Of course,
T may also contain constant subtype symbols as well. Notice there are two kinds
of substitution for subtypes: of operators for indeterminates, and of terms for
variables.

Terms in T have arities including subtypes. (We use products to account for terms
containing several free variables.) There are two new term formation rules, cor-
responding to the creation of the E(a, b) subtypes:

(=)Ifa:Y ct— X < oover 4, then r(a) € E(a,a): =7 over A.

(=E)If a, bYc 1> X <o over A, ce E(a,b), Z[xx, yx]: <6 A 0, and d e
Z[a,a], then s(a,b,c;d) € Z[a,b] We write s(d) if a, b, c are clear from the context.

984 R. A. G. SEELY

Furthermore, there may be constants given by T, and terms for subtypes must be
closed under the usual term formation rules, as in 1.1.4.

Finally there are three new equality rules for the terms introduced above, as well
as the rules in 1.1.7 for subtypes, and axioms of T:

(= red) s(a,a,r(a);d) =d.

(=exp) If f[a,b,c] € Z[a,b], then f = s(a,b,c; f[a,a,r(a)]).

(=rule) If c € E(a,b), then a = b and ¢ = r(a).

6.3. In fact, one may construct a PLS theory £ as a definitional extension of a PL
theory T simply: the orders, operators, and terms are those of T, and a subtype is a
pair (X, g), where o is a type, over A4 say, and X is a function which to each closed
operator p of order A assigns a set X (p) of closed terms of type o[p/oy]. A term of
subtype (X, o) with free variable of subtype (Y, 7) is an equivalence class of terms a: ©
— o such that, for each closed operator p € A4, for each closed term b € 7[p/a,] in
Y(p), a[p/oq; b/x.] 1s in X (p). (Note that variables are always such terms.) Two such
terms a, and a, are equivalent if a,[p;b] = a,[p;b] for all closed pe A and b
€ Y(p). A type o is made a subtype (X, o) by taking X (p) to be all closed terms of type
o[p]. The equivalence relation above imposes equations on g, so that although T
and T have the same types, ¥ has more equations between types, in general. Finally,
notice that for terms a,, a, as above, E(a,, a,)is the subtype consisting of all b € Y(p)
so that a,[p; b] = a,[p; b].

DEFINITION 6.4. A PLS category (G, S) consists of

(i) a category S with finite products, a distinguished object 2, and exponentiation
of the form Q4 for Ain S, and

(i) an indexed category G over S satisfying:

(a) for each object A in S, G(A) is “subrepresentable on objects by Q”: this means
there is a full subcategory Repg(A4) < G(A4) so that Obj(Repg(A4)) =~ Homg(4, 2),
every object of G(A) is a subobject of a representable object (i.e. one in Repg(A4)),
and every morphism of G(A) lifts to a morphism in Repg(4) between the cor-
responding representable objects; furthermore, for each f: 4 — B of S, f* acts as
Hom(f, Q) on Obj(Repg(A4));

(b) for each object A in S, G(A) is cartesian closed, has finite limits, and for each
fiA— Bin S, f* preserves this structure;

(c) G is “weakly complete and cocomplete”, as in 2.1(c);

(d) as a subindexed category, (Repg,S) is a PL category.

6.5. REMARK. In 6.4(ii)(a) we do not require morphisms in G(A4) to lift uniquely to
Repg(A4); that would amount to requiring Repg to be a reflective sub (indexed)
category of G. Thinking of types as parametrised sets and subtypes as uniformly
defined subsets, the idea is that maps of subtypes should be restrictions of maps of
types, but several such maps could restrict to the same map of subtypes.

6.6. The definition of a functor of PLS categories is clear; PLS Cat denotes the
category of such categories and functors. As mentioned in 2.4, adding equality to
PLC has added equalisers (and so all finite limits) to the fibres of the PL categories.
The price of adding these subobjects is that we must replace “representability” with
“subrepresentability”. It would be nice to have a PLS category which in fact was a
PL category: Repg = G.

CATEGORICAL SEMANTICS FOR LAMBDA CALCULUS 985

In fact, many such PL categories (with equalisers) can be constructed via the
“partial equivalence relation” construction of models of PLC from models of
untyped lambda calculus. The most interesting variant of this is to do the con-
struction internally, creating an object in a topos which is an (internal) locally car-
tesian closed weakly complete category; this was originally observed by E. Moggi
and J. M. E. Hyland.

6.7. As with PLS theories, we can construct a PLS category (G,S) from a PL
category (G, S). The base category S remains the same. For an object 4 of S, G(A)is
the following category: An object of G(A) is a pair (X, o) where o is an object of G(A)
and X is a function which, for each morphism p: 1 — 4 in S, assigns a set X (p) of
morphisms T — p*as in G(1). (T is the terminal object of G(1), and p*o = G(p)(0),
whichinfactis1 & 4 % Q.)If we use I for the “global sections functor” Hom(1,-)in
the appropriate categories, and 2 for “powerset”, then X ¢ [Ip ¢ I'(A).2(I'(p*o)).
A morphism (Y, 7) - (X, 0) in G(4) is an equivalence class of morphisms a:7 — o
of G(A) such that, for each p e I'(4), I'(p*a): ['(p*t) — I'(p*0) restricts to a map
Y(p) - X(p). Two such morphisms a,, a, are equivalent if I'(p*a,)l Y(p)
= I'(p*a,)| Y(p) for all peI'(A). Note that identity morphisms are morphisms of
G(A), that any object o of G(A) induces an object (I',,a) of G(4) where I',(p)
= I'(p*o), and that any morphism a: 7 — ¢ of G(A) induces a morphism (repre-
sented by itself) a:(I,,7) = (I',,0). REPg(A) is the full subcategory whose objects
are all (I';,0), o in G(A), it is a quotient of G(A4) with the same objects as G(A4)
(morphisms may be identified).

If f: A - BinS, G(f)is defined by composition: G(f)(X, 6) = (f*X, f *), where
f*X(p)=X(fp), and f*6 = G(f)(6) = o f; G(f)(a) = f*a (this is to be in-
terpreted modulo the equivalence relation—it is well defined because of the
functorality of G).

PROPOSITION 6.8. If (G,S) is a PL category, then (G,S) is a PLS category.

PRrOOF. For A in S, G(A) is cartesian closed:

The terminal object is (I" 1, T).

(X,0) x (Y,71) = (X x Y,0 A 1), where X x Y(p) = X(p) x Y(p).

(Y,7)* = (Y*,0 o 1), where Y*(p) = {f: X(p) - Y(p): f is the restriction of a
map I'(p*c) - I'(p*t) induced by a morphism p*s — p*t of G(1)}.

G(A) has finite limits: Given morphisms a,, a,:(Y,7) —(X,0), the equaliser
E(al,az) is (E(ay,a,),), where E(ay,a,)(p) = {xa Y(p): F(P a,)(x) = I'(p*ay)(x)}.

G is weakly complete: if (X, o) is an object of G(4) = G(4 x C),theno: 4 x C
— Q, and for {py,p,) e ['(A x C), X(py,p2) < I'({py,p2>*0). Then

I;I(X, O-) = <H P2 € r(c) ° X(°’p2))l;l(a)>'
This means the following: If p, ¢ I'(4), then p¥[1c(0) = I1c(p¥0), so its global
sections (in G(1))
T-pi H(o) H(pi"a)
Kc(T) =T- p’fa

986 R. A. G. SEELY

correspond to the global sections of p¥ain G€(1) = G(C).(Here p* means G(p,), so
p*o = G(p)(0) = CLS5 4 x C % Q) Then [1p, e I'(C) - X(p,, p,) is the set of
such global sections z of p¥o with the property that for any p, e I'(C), p¥ze X(py, p,).
(Here p% means G(p,); note that p% z is a global section in G(p,)G(p; x C)(0)
= G({py,p27)(0)) N

The weak cocompleteness of G is somewhat more involved. The cartesian
closedness and weak completeness of G used essentially the ideas of §3, where I’
generalises the notion of fixed point, T (see 3.5 and 3.8). But there is a problem with
2., in that the “easy” description of I'(¥c(c)) in terms of I'(C) and I'({p,, p,>*0)
fails to be true in general. More precisely, for p, ¢ I'(4), we do not have a bijection

? > pi Z(G) in G(1)
S CinS T pte Gl

(M

However, we do have a construction {p,, x) i z, described below. Then if (X, o) is
in G¢(A),

;(X,G) = <Zp28r(C)-X(-,p2), ;(6)),

where Y.p, ¢ I'(C) - X(p,, p,) is the image under this construction of all {p,, x, for
p28r(c), ng(PuPz)-

Syntactically, this amounts to the following: if Y..(X, 0) = (XX, X.c0), then Y- X
is a function so that if p, is a closed operator of order A, (3. X)(p,) is the set of all
closed terms of type Yy € C - o[p;,7] of the form I,,(x), where x ¢ X (py, p,) and p, is
a closed operator of order C. The lack of a bijection above reflects the fact that
theories of the generality we allow may have closed terms of type Yy € C - o[p;,7]
other than those of the form I, (x).

We sketch the details: given {p,, x> as above, z is

P12 ¥, 0 X2 T > py, pyy*o — <P1,P2>*KC;(O') = p’f;(o),

since <py, p;)*Kkc = p¥. Given a:(LcX,¥c0)—(Y,7) in G(A), where Y oX =
20,eI(C).X(+,p,), let b = kc(a)-n, be the usual morphism o — k-7 in G¢(A)
induced by a. To see b is a morphism (X, 6) — (k. Y, k1) of G€(4), one must check
that for any p; e I'(A), p, e I'(C), x ¢ X(py, p,), we have ({p,, p,>*b) o xisin Y(p,). But

$p1,p20*b = {py, p20*Kc(@) o {py, p2>*N, = pFa o {py,p2>*n,,

so this is just the condition that a is a morphism of G(A), viz. that for any z¢
YcX(0y), pfaoz is in Y(p,), since z = {p;, p,>*n, o x. Conversely, given b:(X,0)

= (kcY, K1) in (~;C(A), the induced morphism a = ¢, 0 Y (b):Y.co = T of G(A) is a
morphism of G(4), (LcX, an) (Y,7). Now we must verify that for any z =
{p1sP2>¥Ng 0 x in XX (py), p¥aoz is in Y(p;). But by the triangle equality b =

Kcle) o keXie(b) o Ngs SO

{p1,p20*b = p‘f(& o ;(b)> o {p1,P20*N, = pFac {py,p>*N,.

CATEGORICAL SEMANTICS FOR LAMBDA CALCULUS 987

So p¥a o z = ({py, P,)*b) ° x, and this is in Y(p,) since b is a morphism o£(~}C(A). (It
is obvious these correspondences respect equivalence of morphisms in G.)

§7. Natural numbers objects.

7.1. In a category, a natural numbers object N is an initial diagram of the form
1% N % N;ie. for any diagram 1 % A 5 A, there is a unique N 5 4 making the
following diagram commute:

N
A

If f is not necessarily unique, then N is a weak natural numbers object.

For an indexed category (G, S) to have a natural numbers object N, each fibre
G(A) should have a natural numbers object N, and for any f: B — A of S, f*(N,)
= N (up to unique isomorphism). It follows from Freyd’s characterisation of
natural numbers objects that any (left and right) exact functor preserves them (Freyd
[1972]), and so if (G, S) is a PL (or PLS) category, x(A4) preserves N for any A, C in
S, since k has left and right adjoints. In particular, if !,: 4 — 1, then !} preserves
natural numbers objects, so N, =!%(N,), and so also for f:B— A, f*(N,) =
f*1%5(N,) =15(N,) = Np. Hence:

DEFINITION/COROLLARY 7.2. A PL (or PLS) category (G,S) has a natural numbers
object if G(1) has.

7.3. Any PL category (G, S) has a natural candidate for a natural numbers object,
namely the interpretation of the type N = [Ja e Q- a x (¢ > a) > a in G(1). Then
0: T - N would be the interpretation of the (closed) term A a e Q- A{x,y) € a x
(o > &) - x (with the evident abuse of notation to avoid projection terms), and s:
N — N would be the interpretation of the term

neN-AoeQ-Ai{x,yyeax (o> a)-yn{a}({x,y)).

—

h><——2

—_—

For any closed type o (i.e. object of G(1)), there is an “iterator”
I:6c x(@d>06) x N—>o, I, = A{x,y,ny €0 x (6 20) x N-n{a}({x,y)),
satisfying the equations
LK%, 9,00) =x, L(x,,50))) = y(I,({x, y,n))).

So N is a weak natural numbers object (Lambek and Scott [1986]). Primitive
recursion can then be defined: R,: 6 x (N x 6 © ¢) x N — ¢ is given by

Ra(x’ }’, n) = nZ(n{N X 6}(<0, x>7 <S7[1,y>)),
for projections N «—— N x ¢ —— g, and
Ro‘(x, y, 0) = x, Ra‘(x’ y, Sn) = y(n{N X G}(<O’ x>a <S7[1, y>))'

The usual recursion equation is R (x, y, sn) = y({n, R,(x, y,n)>); this would follow

988 R. A. G. SEELY

if m(n{N x ¢}(<0,x),{smy,y))) =n, which is true for standard numerals
so 5o+ o 5(0), but not in general. However, we could make N a (strong) natural
numbers object by “throwing away” nonstandard numerals:

PROPOSITION 7.4. Any PL category (G,S) has a weak natural numbers object, the
type N of “Church numerals”. The corresponding PLS category (G,S) has a natural
numbers object (X, N), where X is the set of standard numerals.

7.5. ExaMPLE. In the closure operator model of §3, N=Ax-daeQ-a-
x(a) e a A (a > a); a “term” (= fixed point) of “type” N is a function x: K - 2w
so that for any a € K, x(a): a A (a © a) — a. Here the standard numerals are itera-
tions of the “evaluation” function (1(a) = ev,:a A (a © a) — a), but N has other
terms. (For instance, every closure operator has the fixed point T = w, so the
constant maps to T give a fixed point of N, which is not a standard numeral.)

7.6. REMARKS. (1) With 7.4 we have all the structure needed for a Dialectica
interpretation, as carried out in Girard [1971]. This would follow a pattern similar
to that of Scott [1978]; I hope to present the details in a sequel.

(2) There are other models of PLC that give rise to PL categories with very
interesting structure. One example of an internal PL category with an internal
natural numbers object, due to J. M. E. Hyland, is based on the partial (or restricted)
equivalence relations of Scott [1976]. The idea is to construct the category Per of
partial equivalence relations inside the effective topos Eff. Per then turns out to be
a locally cartesian closed (internal) category with natural numbers object, and is
weakly complete and cocomplete. I hope the details of this model will be available
soon. It is related to the structure HEO of Girard [1972].

REFERENCES

H. BARENDREGT and A. Rezus [1983], Semantics for classical AUTOMATH and related systems,
Information and Control, vol. 59, pp. 127-147.

K. B. BRUCE and A. R. MEYER [1984], The semantics of second order polymorphic lambda calculus,
Semantics of data types (G. Kahn et al., editors), Lecture Notes in Computer Science, vol. 173, Springer-
Verlag, Berlin, pp. 131-144,

R. BURSTALL, D. MACQUEEN and D. SANNELLA [19807, HOPE: an experimental applicative language,
Report CSR-62-80, Computer Science Department, Edinburgh University, Edinburgh.

P. FrReYD [1972], Aspects of topoi, Bulletin of the Australian Mathematical Society, vol. 7, pp. 1-76.

J.-Y. GIRARD [1971], Une extension de linterpretation de Gdidel d I'analyse, et son application a
"élimination des coupures dans l'analyse et la théorie des types, Proceedings of the second Scandinavian
logic symposium (J. E. Fenstad, editor), North-Holland, Amsterdam, pp. 63-92.

[1972], Interprétation fonctionnelle et élimination des coupures de Uarithmétique d’ordre
supérieur, Thése de Doctorat d’Etat, Université Paris-VI1, Paris. (Much of this is summarised in Girard
[1971], [1973])

[1973], Quelques résultats sur les interprétations fonctionnelles, Cambridge summer school in
mathematical logic (A. R. D. Mathias and H. Rogers, editors), Lecture Notes in Mathematics, vol. 337,
Springer-Verlag, Berlin, pp. 232-252.

J.M. E. HYLAND, P. T. JOHNSTONE and A. M. PrtTs [1980], Tripos theory, Mathematical Proceedings
of the Cambridge Philosophical Society, vol. 88, pp. 205-232.

F. LAMARCHE [1985], Unpublished lecture notes, McGill University, Montréal.

J. LamBEK and P. J. Scotr [1986], Introduction to higher order categorical logic, Cambridge Studies in
Advanced Mathematics, vol. 7, Cambridge University Press, Cambridge.

S. MAc LANE [1971], Categories for the working mathematician, Springer-Verlag, Berlin.

N. J. MCCRACKEN [1979], An investigation of a programming language with a polymorphic type
structure, Ph.D. Thesis, Syracuse University, Syracuse, New York.

CATEGORICAL SEMANTICS FOR LAMBDA CALCULUS 989

R. MILNER [1984], The standard ML core language, Report CSR-168-84, Computer Science
Department, Edinburgh University, Edinburgh.

R. PARE and D. SCHUMACHER [1978], Abstract families and the adjoint functor theorems, Indexed
categories and their applications (P. T. Johnstone and R. Paré¢, editors), Lecture Notes in Mathematics,
vol. 661, Springer-Verlag, Berlin, pp. 1-125.

J. C. REYNOLDS [1974], Towards a theory of type structure, Colloque sur la programmation (B. Robinet
editor), Lecture Notes in Computer Science, vol. 19, Springer-Verlag, Berlin, pp. 408-425.

[1984], Polymorphism is not set-theoretic, Semantics of data types (G. Kahn et al,, editors),
Lecture Notes in Computer Science, vol. 173, Springer-Verlag, Berlin, pp. 145-156.

D. S. ScotT [1976], Data types as lattices, SIAM Journal on Computing, vol. 5, pp. 522-587.

P. J. ScotT [1978), The “‘Dialectica’ interpretation and categories, Zeitschrift fiir Mathematische
Logik und Grundlagen der Mathematik, vol. 24, pp. 553-575.

R. A. G. SEeLY [1979], Girard’s type theory and categories, Unpublished lecture notes, McGill
University, Montréal.

[1982], Review of P. T. Johnstone, Topos theory, this JOURNAL, vol. 47, pp. 448-450.

[1983], Hyperdoctrines, natural deduction and the Beck condition, Zeitschrift fiir Mat-
hematische Logik und Grundlagen der Mathematik, vol. 29, pp. 505-542.

[19841], Locally cartesian closed categories and type theory, Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 95, pp. 33—48.

[1986a], Higher order polymorphic lambda calculus and categories. 1, Mathematical Reports of
the Academy of Science (Canada), vol. 8, pp. 135-139.

[1986b], Higher order polymorphic lambda calculus and categories. 11, Mathematical Reports of
the Academy of Science (Canada), vol. 8, pp. 197-201.

DEPARTMENT OF MATHEMATICS
JOHN ABBOTT COLLEGE
STE. ANNE DE BELLEVUE, QUEBEC H9X 3L9, CANADA

