

Instructor: Dr. R.A.G. Seely

Cal I (S) (Maths 201–NYA)

Answers

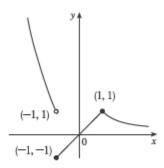
The questions and the answers are all taken from Stewart.

1.
$$f(x) = \begin{cases} x^4 & \text{if } x < -1 \\ x & \text{if } -1 \le x < 1 \\ 1/x & \text{if } x \ge 1 \end{cases}$$

f is continuous on $(-\infty, -1)$, (-1, 1), and $(1, \infty)$, where it is a polynomial,

a polynomial, and a rational function, respectively.

Now
$$\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} x^4 = 1$$
 and $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} x = -1$,



so f is discontinuous at -1. Since f(-1) = -1, f is continuous from the right at -1. Also, $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x = 1$ and $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{1}{x} = 1 = f(1)$ so f is continuous at 1.

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{1}{x} = 1 = f(1), \text{ so } f \text{ is continuous at } 1.$$

2.
$$f(x) = \begin{cases} kx^2 + 2x & \text{if } x < 2\\ x^3 - kx & \text{if } x \ge 2 \end{cases}$$

f is continuous on $(-\infty,2)$ and $(2,\infty)$. Now $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} \left(kx^2+2x\right) = 4k+4$ and

 $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \left(x^3 - kx \right) = 8 - 2k. \text{ So } f \text{ is continuous } \iff 4k + 4 = 8 - 2k \iff 6k = 4 \iff k = \frac{2}{3}. \text{ Thus, for } f = \frac{2}{3} + \frac{2}{3}$

to be continuous on $(-\infty, \infty)$, $k = \frac{2}{3}$.

3. $f(x) = x^2 + 10 \sin x$ is continuous on the interval [31, 32], $f(31) \approx 957$, and $f(32) \approx 1030$. Since 957 < 1000 < 1030, there is a number c in (31, 32) such that f(c) = 1000 by the Intermediate Value Theorem. *Note:* There is also a number c in (-32, -31) such that f(c) = 1000.

Note: any two x values will do, as long as 1000 lies between their y values; they may even be far apart, such as x = 0 and x = 1000. The answer given here makes them close enough that one has the value of c to within ± 1 .

4.(a) We must first find the function f. Since f has a vertical asymptote x=4 and x-intercept x=1, x-4 is a factor of the denominator and x-1 is a factor of the numerator. There is a removable discontinuity at x=-1, so x-(-1)=x+1 is a factor of both the numerator and denominator. Thus, f now looks like this: $f(x)=\frac{a(x-1)(x+1)}{(x-4)(x+1)}$, where a is still to be determined. Then $\lim_{x\to -1} f(x)=\lim_{x\to -1} \frac{a(x-1)(x+1)}{(x-4)(x+1)}=\lim_{x\to -1} \frac{a(x-1)}{x-4}=\frac{a(-1-1)}{(-1-4)}=\frac{2}{5}a$, so $\frac{2}{5}a=2$, and a=5. Thus $f(x)=\frac{5(x-1)(x+1)}{(x-4)(x+1)}$ is a ratio of quadratic functions satisfying all the given conditions and $f(0)=\frac{5(-1)(1)}{(-4)(1)}=\frac{5}{4}$.

(b)
$$\lim_{x\to\infty}f(x)=5\lim_{x\to\infty}\frac{x^2-1}{x^2-3x-4}=5\lim_{x\to\infty}\frac{(x^2/x^2)-(1/x^2)}{(x^2/x^2)-(3x/x^2)-(4/x^2)}=5\frac{1-0}{1-0-0}=5(1)=5$$

5. $y=f(x)=x^4-x^6=x^4(1-x^2)=x^4(1+x)(1-x)$. The y-intercept is f(0)=0. The x-intercepts are 0, -1, and 1 [found by solving f(x)=0 for x]. Since $x^4>0$ for $x\neq 0$, f doesn't change sign at x=0. The function does change sign at x=-1 and x=1. As $x\to\pm\infty$, $f(x)=x^4(1-x^2)$ approaches $-\infty$ because $x^4\to\infty$ and $(1-x^2)\to-\infty$.

