

Instructor: Dr. R.A.G. Seely (April 2016)

(Marks)

Test 2 (version A)

Calculus III (Maths 201–DDB)

Justify all your answers—just having the correct answer is not sufficient.

Pace yourself—a rough guide is to spend not more than 2m minutes or so on a question worth m marks. Remember vectors are given in **boldface**: so v is a vector, v is a scalar.

- (3) 1. Prove that $|u + v|^2 + |u v|^2 = 2(|u|^2 + |v|^2)$, for any vectors u, v. (Hint: dot product!)
- (5) 2. (a) Is the following statement true or false?: If u, v are unit vectors, then $u \times v$ is a unit vector also. If true, prove it; if false, give an example where it is false.
 - (b) Suppose that an object moves along a curve $\mathbf{r} = \mathbf{r}(t)$ so that for all t, the velocity and acceleration \mathbf{v} , \mathbf{a} are always unit vectors. What is the curvature κ of the path of the curve? (The justification for your answer is what I shall be marking, not merely the answer, which you might think is obvious!)

(Hint: for questions 1,2 don't use components; instead use the general properties of vector functions.)

(6) 3. Name and sketch the following surfaces in 3-space. Show all your work, including traces and intercepts.

(a) $z = \sqrt{y^2 - x^2 - 1}$ (b) $\rho = 9\cos\varphi$

4. A particle moves along the space curve $\mathbf{r} = \langle e^t, e^t \sin t, e^t \cos t \rangle$.

- (2) (a) Show that this curve lies on the surface of a cone. (*Hint: Pythagoras*)
- (b) Sketch the graphs of the cone and the space curve, indicating the orientation (direction of increasing t) of the curve.
- (6) (c) Find the unit tangent vector T(t); the unit normal vector N(t); and the curvature $\kappa(t)$.
- (4) (d) Find the tangential and normal components a_T, a_N of acceleration.
- (3) (e) Find the parametric equations of the tangent line to the curve at the point where t = 0.

(Hint: do the algebra carefully, and you will find that things simplify nicely.)

- (4) 5. Find the equation of the tangent plane to the surface $z = \cos(x) + \sin(y)$ at the point (0,0,1). Use the tangent plane to estimate the value of z at (0.1, -0.1). (You don't need a calculator for that, but you may use one to see how "good" the estimate is.)
- (9) 6. Calculate the following limits (if possible; if the limit does not exist, say so, and justify your answer).

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 y^3}{x^2 + y^6}$$
 (b) $\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2 + y^6}$ (c) $\lim_{(x,y)\to(0,0)} \frac{x^2 + 2}{y^6 + 6}$

(4) 7. Show that
$$z = x/y$$
 is a solution of the equation $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0$.

(Total: 50)