Instructor: Dr. R.A.G. Seely (Feb 2016)

Calculus III (Maths 201–DDB)

(Marks)

Note: Justify all your answers — don't make me guess your thoughts!

- (2) 1. (a) Using the Binomial Theorem and the fact that $\ln(1-x) = -\int_0^x \frac{1}{1-t} dt$, derive the Maclaurin series for $f(x) = \ln(1-x)$. What is the interval of convergence of this series?
- (b) By choosing a suitable value for x, find a power series whose sum is ln 2. Approximate the value of ln 2 by using the first four terms of this series. (Actually, there are two easily found values of x which will do; I will give more marks for choosing a value which gives a better approximation, or which is closer to the center of the interval of convergence.)
- (1) (c) Use your series for $f(x) = \ln(1-x)$ to find a general formula for the value of $f^{(n)}(0)$.
- (4) 2. Construct a power series for $f(x) = \int_0^x \frac{1 \cos(t/2)}{t} dt$. What is its interval of convergence?
- (4) Use this series to approximate $\int_0^{1/2} \frac{1 \cos(x/2)}{x} dx$ to 6 decimal places. Justify your error estimate.
- (4) 3. Use the Binomial Series to derive a power series for $f(x) = 1/\sqrt{x}$ about x = 4.
- (3) Use Taylor's Inequality to estimate the error in using the Taylor polynomial $T_4(x)$ to approximate f(x) for $3 \le x \le 5$.

4. Consider the curve given by the following parametric equations: $\begin{cases} x = t^2 - 4t \\ y = t^3 - 3t^2 \end{cases}$

- (6) (a) Find the x and y intercepts. Find $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$, and all points with horizontal and vertical tangents. Find all points of inflection (where the curve changes concavity). Sketch the graph, showing all these points. Indicate the direction of increasing t (the "orientation").
- (b) Find the area of the region in quadrant II below the curve (*i.e.* the region above the x axis, to the left of the y axis, and below the curve).
- (c) Set up (but don't evaluate) the integral needed to calculate the arc length of the part of the curve in quadrant II. (For a bonus mark, simplify the integral so it would be as easy to calculate as possible.)
- (4) 5. Sketch $r = 3\sin\theta$ and $r = 1 + \sin\theta$ on the same axes. Find all points of intersection.

You do NOT need to evaluate the following two integrals.

- (2) Set up the integral needed to calculate the area inside the first curve but outside the second (*i.e.* between the two curves).
- (2) Set up the integral needed to calculate the perimeter of the second curve.
- (3) 6. (a) Sketch the graph of $r^2 = 4\sin\theta$.
- (2) (b) Find the area of one loop.
- (c) Set up the integral (but do not evaluate it!) needed to calculate the length of the perimeter (*i.e.* the arc length) of one loop.