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Carefully study the text below and attempt the exercises at the end. You will be evaluated on this material by writing a
30 to 45 minute test (which may be part of a larger class test). This test will be worth 10% of your class mark and may
include questions drawn from the exercises at the end.
This activity will contribute to your attainment of the Science Program competency: To put in context the emergence
and development of scientific concepts.

1. CONIC SECTIONS

The Greeks originally viewed parabolas (and also circles, el-
lipses and hyperbolas) as conic sections. Imagine rotating a
straight line about a vertical line that intersects it, thus obtaining a
circular (double) cone. A horizontal plane intersects the cone in a
circle. When the plane is slightly inclined, the section becomes an
ellipse. As the intersecting plane is inclined more towards the ver-
tical, the ellipse becomes more elongated until, finally, the plane
becomes parallel to a generating line of the cone, at which point
the section becomes a parabola. If the intersecting plane is in-
clined still nearer to the vertical, it meets both branches of the
cone (which it did not do in the previous cases); now the curve of
intersection is a hyperbola.
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2. ARCHIMEDES’ THEOREM

A segment of a convex curve (such as a parabola, ellipse or hy-
perbola) is a region bounded by a straight line and a portion of the
curve.

In his book Quadrature of the Parabola, Archimedes gives two
methods for finding the area of a segment of a parabola (previous
mathematicians had successfully attempted to find the area of a
segment of a circle and of a hyperbola). The second of these meth-
ods, which we discuss below, is based on the so-called “method
of exhaustion.”
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Given a parabolic segment S with base AB (see the above fig-
ure), the point P of the segment that is farthest from the base is
called the vertex of the segment, and the (perpendicular) distance
from P to AB is its height. (The vertex of a segment is not to be
confused with the vertex of the parabola which, as you will recall,
is the intersection point of the parabola with its axis of symmetry.)
Archimedes shows that the area of the segment is four-thirds that
of the inscribed triangle APB. That is,

the area of a segment of a parabola is 4/3 times
the area of the triangle with the same base and
height.

(Exercise 1 asks you to check Archimedes’ result in a very simple
case.)

3. PRELIMINARIES ON PARABOLIC SEGMENTS

By the time of Archimedes, the following facts were known
concerning an arbitrary parabolic segment S with base AB and
vertex P .

P1. The tangent line at P is parallel to AB.
P2. The straight line through P parallel to the axis of the parabola

intersects AB at its midpoint M .
P3. Every chord QQ′ parallel to AB is bisected by PM .
P4. With the notation in the figure below,

PN

PM
=

NQ 2

MB 2

(Equivalently, PN = (PM/MB 2) · NQ 2. In modern
terms, this says that, in the pictured oblique xy-coordinate
system, the equation of the parabola is y = λx2, where
λ = PM/MB 2.)
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Archimedes quotes these facts without proof, referring to ear-
lier treatises on the conics by Euclid and Aristaeus. (You are asked
to prove the first three properties, mostly by modern methods, in
exercises 2, 3 and 4. Using property P2 to find the vertex, you will
then, in exercise 5, verify Archimedes’ theorem in another special
case. Exercise 6 will then guide you through a modern proof of
the general case.)

4. PART 1: THE METHOD OF EXHAUSTION

To find the area of a given parabolic segment S, Archimedes
begins by constructing a sequence of inscribed polygons P0, P1,
P2, . . . , that fill up or “exhaust” S. The first polygon P0 is the
inscribed triangle APB with AB the base of segment S and P its
vertex. To construct the next polygonP1, consider the two smaller
parabolic segments with bases PB and AP ; let their vertices be
P1 and P2, respectively, and let P1 be the polygon AP2PP1B.
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We continue in this way, adding at each step the triangles in-
scribed in the parabolic segments remaining from the previous
step. As seems clear from the above figures, the resulting poly-
gons P0, P1, P2, . . . , exhaust the area of the original parabolic
segment S. In fact, Archimedes carefully proves this by showing
that the difference between the area of S and the area of Pn can
be made as small as one pleases by choosing n sufficiently large.
In modern terms, this simply means that

(1) lim
n→∞

area(Pn) = area(S)

(but it is important to realize that Archimedes, like all the ancient
Greek mathematicians, had no limit concept).

To prove (1), we let

Mn = area(S) − area(Pn) for n = 0, 1, 2, . . .

and show that limn→∞ Mn = 0. Consider the parallelogram
ABB′A′ circumscribed about the segment S, whose sides AA′

and BB′ are parallel to the axis of the parabola, and whose base
A′B′ is tangent to the parabola at P (and therefore parallel to AB,
by property P1).
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Since the area of the inscribed triangle APB is half that of the
circumscribed parallelogram (why?), it follows that the area of
this triangle is more than half the area of the parabolic segment
S. The remaining area, which equals M0 because P0 = 4APB,
must therefore be less than half the area of S:

M0 < 1

2
area(S)

Now consider the two triangles (4AP2P and 4PP1B) that
are added in the next step to form polygon P1. The above argu-
ment, applied to the two smaller parabolic segments with bases
AP and PB, shows that the areas of these triangles are more than
half the areas of the two segments. It therefore follows that

M1 < 1

2
M0

Continuing in this way, we see that

M2 < 1

2
M1, M3 < 1

2
M2, . . . ,

and in general Mn < 1

2
Mn−1. It is now easy to prove that

limn→∞ Mn = 0 (see exercise 7), and therefore (1) follows.

5. PART 2: FINDING THE AREA OF Pn

At each step in the construction of the polygons P0, P1,
P2, . . . , we add triangles to the previous polygon: a single tri-
angle (4APB) begins the process, then two triangles (4AP2P
and 4PP1B) are added in the next step, then four triangles are
added, etc. Let a0, a1, a2, . . . , be the total areas of the triangles
added at each step. Thus

a0 = area(4APB),

a1 = area(4AP2P ) + area(4PP1B),

and so on. In the second part of his proof, Archimedes finds the
area of the polygons P0, P1, P2, . . . , by evaluating the sum

(2) a0 + a1 + a2 + · · · + an = area(Pn)

The key step is to show that the total area of the triangles added
at each step is equal to 1/4 the total area of the triangles added at
the previous step. In other words,

(3) a1 = 1

4
a0, a2 = 1

4
a1, . . . ,

and in general an = 1

4
an−1. We will describe Archimedes’ proof

that a1 = 1

4
a0, leaving the general case to exercise 8.

We want to show that the sum a1 of the areas of triangles
AP2P and PP1B is 1/4 that of 4APB. Apply property P2 to
both the original parabolic segment S and the smaller segment
with base PB: we obtain two lines parallel to the axis of the
parabola, one going through P and intersecting AB at its mid-
point M , and one going through P1 and intersecting PB at its
midpoint Y . Let M1 be the intersection point of this second par-
allel line with AB. Then M1 is the midpoint of MB because
the triangles Y M1B and PMB are similar. Finally, let V be the



intersection with PM of the line through P1 parallel to AB (so
V MM1P1 is a parallelogram).
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Applying property P4 (with N = V and Q = P1) and noting
that V P1 = MM1 = 1

2
MB, we have

PV

PM
=

V P1
2

MB 2
=

1

4
so PM = 4PV . Two consequences follow from this. First, since
P1M1 = V M , we have

(4) P1M1 = 3PV

Second, because M1B = 1

2
MB, Y M1 = 1

2
PM (by similar tri-

angles again), so that

(5) Y M1 = 2PV

Now (4) and (5) imply that P1Y = PV , so in fact

Y M1 = 2P1Y

Now consider the two triangles PM1B and PP1B. They have
the same base PB and, because Y M1 = 2P1Y , a simple argu-
ment with similar triangles shows that the height of 4PM1B is
twice the height of 4PP1B (both heights being relative to the
common base PB). Therefore

(6) area(4PM1B) = 2 area(4PP1B)

Similarly, triangles PMB and PM1B have the same base PB
and, since MB = 2M1B, the height of 4PMB is twice that of
4PM1B, so

(7) area(4PMB) = 2 area(4PM1B)

It follows from (6) and (7) that

(8) area(4PP1B) = 1

4
area(4PMB)

An argument similar to the one in the last paragraph shows that

area(4AP2P ) = 1

4
area(4APM)

Combining this with (8) then gives

area(4AP2P ) + area(4PP1B)

= 1

4
area(4APM) + 1

4
area(4PMB)

= 1

4
area(4APB)

so a1 = 1

4
a0, as desired (see exercise 9 for a shorter proof).

Returning now to the area of polygon Pn (see (2) above) and
using (3), we have finally

area(Pn) = a0 +
1

4
a0 +

1

42
a0 + · · · +

1

4n
a0

In other words, the areas a0, a1, a2, . . . , added at each step in
the construction of Pn form a geometric sequence with common

ratio 1/4, and area(Pn) is the sum of the first n + 1 terms of this
sequence.

6. CONCLUSION OF ARCHIMEDES’ PROOF

Now that the area of Pn has been determined, it follows from
the conclusion of Part 1 that the difference between the area of the
parabolic segment S and the sum

a0 +
1

4
a0 +

1

42
a0 + · · · +

1

4n
a0

can be made as small as one pleases by choosing n sufficiently
large. In modern terms,

(9) area(S) = lim
n→∞

(

a0 +
1

4
a0 +

1

42
a0 + · · · +

1

4n
a0

)

and Archimedes now seeks to determine this limit.
He begins by deriving the identity

(10) 1 +
1

4
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1
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1
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+

1

3
·
1

4n
=

4

3
which is a restatement of the formula you learned for the par-
tial sums of a geometric series (see exercise 10). As Archimedes
shows, (10) follows from the observation that
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for we can then sum the terms on the left side of (10) by repeat-
edly adding the last two terms:
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From a modern perspective, Archimedes’ theorem is now a

simple consequence of (9) and (10):

area(S) = a0 · lim
n→∞

(

1 +
1

4
+ · · · +

1

4n

)

= a0 · lim
n→∞

(4

3
−

1

3
·
1

4n

)

= 4

3
a0 − a0 · lim

n→∞

1

3 · 4n

= 4

3
a0 − a0 · 0

= 4

3
area(4APB)

No doubt Archimedes intuitively obtained the answer 4/3 in a
similar way but, rather than taking limits explicitly, he completed
the proof by showing that the two alternative conclusions

area(S) < 4

3
area(4APB)

and
area(S) > 4

3
area(4APB)

both lead to a contradiction, and so must be false. This approach
(whose details we will omit) was in fact typical of Greek proofs
by the method of exhaustion.



7. EXERCISES

1. Use integration to verify Archimedes’ theorem for the segment
bounded by y = x2 and the line y = 1. (Determine the vertex
of the segment and show that the inscribed triangle has area 1.
Then integrate to verify that the segment has area 4/3.)

2. Property P1 follows easily from an important theorem you
learned in Calculus I. Which one? (Rotate the parabolic seg-
ment until its base AB is horizontal. What can you then say
about the vertex P ?)

3. Prove property P2 by modern methods as follows. Introduce a
rectangular xy-coordinate system centred at the vertex of the
parabola, as in the figure below.
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In these coordinates, the equation of the parabola has the form
y = kx2 and its axis of symmetry is the y-axis. Assume
first that k = 1 and write A = (a, a2), B = (b, b2) and
P = (x, x2).
(a) Show that x = 1

2
(a + b) by computing the slope of the

tangent line at P in two different ways: (i) using calculus
and (ii) using property P1.

(b) Explain why the result of part (a) proves property P2.
(c) If k 6= 1, what changes do you need to make to the calcu-

lation in part (a)?
4. Explain why property P3 follows from P2. (What is the vertex

of the parabolic segment Q′PQ?)
5. Consider the parabolic segment bounded by y = x2 and the

line y = 2x + 3.
(a) Sketch the segment and find the points A, B and P . (Use

property P2 to find the vertex P of the segment; see also
exercise 3(a).)

(b) Let M be the midpoint of AB. Find PM and use it to
compute the area of triangle APB. (Add the areas of trian-
gles APM and PBM , and note that these triangles have
the same base PM and equal heights.)

(c) Find the area of the segment by integrating and check
Archimedes’ theorem.

6. Prove Archimedes’ theorem by modern methods as follows.
Using property P2, we can label the x-coordinates of A, B and
P as in the figure below.
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Assume first that k = 1.
(a) Use the method of exercise 5(b) to show that the area of

triangle APB is r3.
(b) Show that the equation of line AB is y = 2hx + r2 − h2.
(c) Find the area of the segment by integrating. (You should

get a value of 4

3
r3, thus proving Archimedes’ theorem for

k = 1.)
(d) If k 6= 1, what changes do you need to make to the calcu-

lations in parts (a), (b) and (c)?
7. (a) Let M0, M1, M2, . . . , be any sequence of positive num-

bers such that Mn < 1

2
Mn−1 for n = 1, 2, . . . Show that

limn→∞ Mn = 0. This result, which is really the crux of
the method of exhaustion, is originally due to Eudoxus, a
predecessor of Euclid’s. (For the proof, start by showing
that 0 < Mn < M0/2n.)

(b) Given any positive number r < 1, show that the conclu-
sion of part (a) still holds if the positive numbers M0, M1,
M2, . . . , satisfy Mn < rMn−1 for n = 1, 2, . . .

8. Show that a1 = 1

4
a0 implies a2 = 1

4
a1, and convince yourself

of the general case an = 1

4
an−1.

9. In exercise 6, you showed that for the parabola y = kx2, the
area of triangle APB is kr3. Use this to give a second proof
that a1 = 1

4
a0.

10. Prove (10) using the formula for the partial sums of a geo-
metric series:

1 + r + r2 + · · · + rn =
1 − rn+1

1 − r

11. Write a short summary of the three parts of Archimedes’
proof.


