WeBWorK set G-MaxMin, Problem 4 – the graph

This problem was to graph the function $y = \frac{x^3}{x^2 - a^2}$ for various values of a. I'll sketch the solution for the case a = 2; you can make corresponding changes for the version you had.

If $y = \frac{x^3}{x^2 - a^2}$, then $y' = \frac{x^2(x^2 - 3a^2)}{(x^2 - a^2)^2}$ and $y'' = \frac{2a^2x(x^2 + 3a^2)}{(x^2 - a^2)^3}$. In particular, if a = 2 we get $y = \frac{x^3}{x^2 - 4}$, $y' = \frac{x^2(x^2 - 12)}{(x^2 - 4)^2}$, $y'' = \frac{8x(x^2 + 12)}{(x^2 - 4)^3}$. From this, the asymptotes, critical points, points of inflection, intervals where y is increasing or decreasing, where it is concave up or down, and so where local maxima, minima, all may be found. In general, the vertical asymptotes are at $x = \pm a$; the max and min are at $x = \pm a\sqrt{3}$, the concavity changes at x = 0 (and at the asymptotes). The WeBWorK solutions for the a = 2 version of the question may be seen in this "mock-up":

(1 point) Answer the following questions for the function
$f(x)=rac{x^3}{x^2-4}.$
Enter points, such as inflection points in ascending order, i.e. smallest x values first. Enter "INF" for ∞ and "MINF" for $-\infty$.
Enter intervals in ascending order also.
A. The function $f(x)$ has two vertical asymptotes: $x = \begin{bmatrix} -2 \end{bmatrix}$ and $x = \begin{bmatrix} 2 \end{bmatrix}$
B. $f(x)$ has one local maximum and one local minimum occuring at x values :
$x_{ ext{max}} = \boxed{-\sqrt{12}}$ and $x_{ ext{min}} = \boxed{\sqrt{12}}$
C. For each interval, tell whether $f(x)$ is increasing (type in INC) or decreasing (type in DEC).
$(-\infty, max)$ INC
(max, -2) DEC
(-2,0) DEC
(0,2) DEC
(2, min) DEC
$(min, +\infty)$ INC
D. $f(x)$ is concave up on the interval (-2 , 0)
and on the inteval (2 , INF)
E. The inflection point for this function occurs at $oldsymbol{x}=$ 0
F. Sketch the graph of $f(x)$ and bring it to class.

From this data, we can sketch the function; for a = 2 the function is given below (the shape is the same for other values of a, but the x and y values will change appropriately).

A point of interest: with the "don't sweat the small stuff" idea, it seems likely that as $x \to \pm \infty$ the graph will look more and more like y = x (we call this a "slant asymptote"). This is pretty clear if we change the scale of the picture, rather like this:¹

 $^{^{1}}$ The graph looks remarkably like two vertical lines with a diagonal crossing them—the vertical and the slant asymptotes being the dominant features from "far away".