
CAUTION
Printing this document can produce errors in the hard copy.  For example, on some platforms, output 
to a postscript file converts plus-minus signs to plus signs.  It is suggested that this manuscript be 
read from the monitor.

There are a few links in the text to other parts of the text.  These function correctly only if all sections
are expanded.

Introduction to Polar Coordinates

Definition of Polar Coordinates
A polar coordinate system is defined in the plane by selecting a point O called the pole,and a half-
line emanating from the pole, called a reference line or reference direction. The reference line is 
usually drawn horizontally on the page, pointing towards the right (like the usual positive x-axis). 
Each point P in the plane is located by specifying the distance r from P to the pole O and the angle 
θ measured counter-clockwise from the reference line to the line through O and P. The quantities
r and θ are called polar coordinates of P, and are listed in the order (r,θ ). 
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Plotting points from polar coordinates is conveniently accomplished on polar graph paper, which 
consists of concentric circles about the pole, corresponding to different r values, and radial lines 
through the pole, corresponding to different θ values. For the type of sketching we shall do, it is 
not necessary to use polar graph paper, but a sample is displayed below for the student's 
information.



Non-uniqueness of Polar Coordinates
The above definition of polar coordinates is extended to allow for all real values of  r and θ. For 
example, values of θ greater than 2 π interpret as one or more complete counterclockwise rotations
about O before arriving at P.  Such values of θ do not determine new points; they merely provide 
additional coordinate sets.  The point located one unit directly above the pole would have polar 

coordinates  (1,
π
2

 ), but the same point would also have polar coordinates (1,
5 π
2

) and (1,
9 π
2

)

as well as infinitely many others. Negative values of θ interpret as clockwise rotations. The point (

1,
π
2

) also has polar coordinates (1, K
3 π
2

) as well as infinitely many others with negative θ.

Negative values of r interpret in terms of backwards (or reverse) motion in the direction 

determined by θ.  Thus the point with polar coordinates (1,
π
2

) would also have polar coordinates 



(K1,
3 π
2

) and infinitely many others obtained from this one by adding or subtracting integer 

multiples of 2 π to the angle 
3 π
2

.  

The non-uniqueness of polar coordinates makes it necessary to be able to determine all polar 
coordinates for a given point. For example, suppose one wishes to determine whether or not a 
particular point is on the graph of a certain polar equation.  In Cartesian coordinates, such a 
determination is simple. If the coordinates of the given point satisfy the Cartesian equation then 
the point is on its graph; otherwise it is not.  But even when one set of polar coordinates of a given
point fails to satisfy a polar equation, the point has infinitely many other sets of polar coordinates 
that still might satisfy the equation.

If a point has one set of polar coordinates (r, θ ), then the others are
(r, θC2 k π) and (Kr, θC 2 kC1  π), k = 0, 1, 2, ...  .

If r is required to be nonnegative and θ is required to lie in the half open interval [0, 2 π) then there
is no ambiguity in the polar coordinates (except that θ is arbitrary for r = 0 ).  The student may 
reasonably ask why these restrictions are not imposed in order to simplify the treatment. The 
answer is that many applications and contexts require using values of r and θ outside of these 
ranges, so that these restrictions would unduly limit the usefulness of the polar coordinate system. 

 Associated Cartesian Coordinates and Transformation 
Equations

Definition of the Associated Cartesian System
It is very useful (and conventional) to associate, in a natural way, a Cartesian coordinate system 
with each polar coordinate system. The origin of the associated Cartesian system is taken as the
pole of the polar system, and the positive x-axis is taken as the reference line in the polar system. 

Transforming Coordinates
In this way, every point in the plane has two kinds of coordinates - Cartesian and polar. It is 
natural to ask how these are related. Given coordinates in one of the coordinate systems, how can 
coordinates be obtained in the other?  This determination is referred to as transformation of 
coordinates, and the equations which effect the transformation are referred to as transformation 
equations. These equations can be obtained from the following diagram, in which the geometrical 
significance of the coordinates r, θ, x and y has been shown.  The diagram assumes that the point 
in question is situated in the first quadrant, but the results can be verified for other quadrants, 
when necessary.
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From Polar to Cartesian
In the right triangle above, the hypotenuse is r, the side opposite θ is y and the side adjacent to 

θ is x. Thus cos θ = x
r

 and sin θ = y
r

 whence

x = r cos θ ,
y = r sin θ .

These are the transformation equations from polar to Cartesian. They accept values of r and θ 
for input and give values for x and y as output. Satisfy yourself that these equations are valid 
no matter what quadrant the point (x, y) is in and no matter what sign r has.

Example problem
Show that the foregoing equations produce the same Cartesian coordinates for each of the 

polar coordinate sets (1,
π
2

), (K1, K
π
2

) and (K1,
3 π
2

).

Solution: For the first set x = (1)cos
π
2

 = 0 and y = (1)sin
π
2

 = 1.

For the second set x = (-1)cos K
π
2

 = 0, y = (-1)sin K
π
2

 = (-1)(-1) = 1.

For the third set x = (-1)cos
3 π
2

 = 0, y = (-1)sin
3 π
2

 = (-1)(-1) = 1.

From Cartesian to Polar

Transforming Equations
Recall what is meant by the graph of an equation. Given and equation in the variables x and y, the
graph of the equation is the set of all points in the xy-plane whose coordinates (x, y) satisfy the 
given equation.  Going the other way, starting with a figure in the plane which is the graph of an 
equation in the variables x and y, we refer to the equation as the equation of the figure. For 
example, we would say that the graph of  x2Cy2 = 25 was the circle of radius 5 centered at the 
origin, and we would also say that the equation of the circle of radius 5 centered at the origin was 
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x2Cy2 = 25.

When both polar and Cartesian coordinate systems are under discussion, we must distinguish 
between the Cartesian graph and the polar graph of an equation, and between the Cartesian 
equation and the polar equation of a figure.  In general, the variables x and y will be associated 
with Cartesian coordinates and the variables r and θ will be associated with polar coordinates. 
Any deviation from this convention must be made very clear.

Consider the equation r = cos θ . One way to graph this equation would be to introduce a θ axis 
and an r axis and draw the cosine function.

plot cos θ , θ = 0 ..4 π
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In this plot, r and θ have been plotted as Cartesian coordinates, not polar coordinates, so 
this is the Cartesian graph of the equation and not the polar graph.  If this was what was 
wanted, it would have been referred to as the "Cartesian graph" of the equation.  Following our 
convention above, we should interpret r and θ as polar coordinates and construct the polar graph. 
Maple will do that for us as follows:

plot cos θ , θ, θ = 0 ..2 π , coords = polar
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We shall verify later that this is a circle.

One other point should be made regarding the definition of the polar graph of an equation. 
Because points in the plane have many different sets of polar coordinates, we must define the 
polar graph of an equation to consist of all points in the plane having at least one set of polar 
coordinates which satisfy the equation. 

 
From Cartesian to Polar
The rule for transforming a given equation from one coordinate system to another is simple 
and natural: always substitute equals for equals. Suppose, for example, we want to find the 
polar equation of the vertical line x = 3. Since x = r cos θ , we obtain r cos θ = 3, which can 
also be written r = 3 sec θ . As another example, consider the circle of radius 2 centered on 
the y-axis at the point (0, -2).  The Cartesian equation of this circle is
x2C yC2 2 = 4. To find the polar equation of the circle we substitute x = r cos θ  and 
y = r sin θ  to obtain r2 cos θ

2
C r sin θ C2

2
= 4. Technically, this is the polar equation

of the circle, but the equation can and should be simplified. In fact,
r2 cos θ

2
Cr2 sin θ

2
C4 r sin θ C4 = 4, 

r2C4 r sin θ = 0,
r =K4 sin θ .
From Polar to Cartesian
The simple and natural rule given above (i.e. substitute equals for equals) is "easier said than 
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done" when it comes to transforming polar equations to Cartesian equations. The reason is that
we do not have simple expressions to substitute for r and θ in terms of x and y, as explained 
above. However we do have expressions for r2 and for tan θ , and sometimes a polar equation 
can be manipulated to make use of these, as in the following example.  Suppose we want to 
transform the polar equation r = 2 sin θ K4 cos θ  to Cartesian form. Multiplying through 
the equation by r gives r2 = 2 r sin θ K4 r cos θ  wherein the substitutions r2 = x2Cy2, 
r sin θ = y and r cos θ = x give
x2Cy2 = 2 yK4 x. This in turn simplifies to xC2 2C yK1 2 = 5.

Some Standard Polar Curves
In order to illustrate calculus topics associated with polar coordinates, it is necessary to deal with 
figures defined by polar equations. Such figures are more accessible when the student has a supply of
familiar figures and equations to draw from. For that reason we introduce and describe a number of 
standard examples below. The student should commit this material to memory.

r = c
The graph of r = c (where c denotes a constant) is a circle cenetered at the origin (pole) of radius 
c . As simple as this example is, it merits some elaboration. Note first that because the variable θ 

does not appear in the equation, it is unrestricted. That is, when we seek polar coordinates (r, θ) 
satisfying the equation, any value of θ satisfies the equation so long as the accompanying value of 
r is c. This is why the graph of the equation consists of an entire circle. Secondly, note that the 
equation has solutions even for negative values of c, since we have assigned a meaning to polar 
coordinates (r, θ) for all values of r.  

The following Maple command will plot the graph of r =K3.
plot K3, θ, θ = 0 ..2 π , coords = polar
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θ = c

The graph of θ = c is a line through the origin (pole) which makes an angle of θ with the positive x-
axis (reference direction). Because r does not appear in the equation, its value is unrestricted (just 
as the value of θ is unrestricted in the previous example) and this is what causes the graph to be an
entire line. Note that negative values of r determine points on the line lying on the opposite side of
the origin from points determined by positive r.

The following Maple command will plot a portion of the line θ =
2 π
3

.

plot r,
2 π
3

, r =K10 ..10 , coords = polar, scaling = CONSTRAINED
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r = 2 a cos θ
This is a spendid example of a polar equation that can be effectively analyzed by transforming to 
Cartesian coordinates. Multiplying both sides by r gives r2 = 2 a r cos θ  and substituting for each
side gives x2Cy2 = 2 ax.  Bringing the 2 ax to the left side and completing the square gives 
xKa 2Cy2 = a2. Thus we see that the polar graph of the equation r = 2 a cos θ  is a circle of

radius a  centered at (a, 0). We used Maple to plot an example of this equation in an earlier 
discussion.  

Here are some useful remarks about this example. First of all, the student should memorize the 
information just presented. This makes the sketch of the equation immediately available  without 
having to go through all the steps of transforming the equation to Cartesian coordinates and then 
simplifying the result. Secondly, notice that the description of the graph holds even for negative 
values of a, which is the reason the the radius needs to be described in general as a  instead of just
a. Third, the appearance of the 2 in r = 2 a cos θ  is wholly a matter of convenience.  The 
numerical coefficient of r cos θ  could just as well be denoted by a, instead of by 2 a, but in that 

case the radius would be described by a
2

 and the center would be situated at the point ( a
2

, 0). 

So using the 2 in naming the coefficient makes for a "cleaner" description of the graph. Finally, 
the point determined by the coordinates (a, 0) is the same whether the coordinates are interpreted 
as polar or as Cartesian. In the next example, the coordinates of the center are not the same in 
either system, so we will have to be careful to specify the system when giving the coordinates.
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r = 2 a sin θ

Mutiplying through this equation by r and substituting gives x2Cy2 = 2 a y which simplifies to 

x2C yKa 2 = a2. Thus the graph is again a circle of radius a , this time centered at polar (a,
π
2

)

(i.e. Cartesian (0,a)).
plot 3 sin θ , θ, θ = 0 ..π , coords = polar
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Notice that the entire circle is traced out as θ varies from 0 to π.

r = a 1Ccos θ
The graph of this equation is shown below for a = 4. Because the curve is heart shaped, it is called
a cardioid.

plot 4 1Ccos θ , θ, θ = 0 ..2 π , coords = polar, scaling = constrained
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Once the student knows the general shape of the graph, it is fairly easy to sketch the figure from 

the four points determined by θ = 0,
π
2

, π and 
3 π
2

.  Notice that the graph is symmetric about the

x-axis.  An interesting phenomenon occurs at the pole.  Let's re-plot the curve around the pole for
a closer look.

plot 4 1Ccos θ , θ, θ =
7 π
8

..
9 π
8

, coords = polar, scaling = constrained
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The graph is seen to approach the pole from above, coming in tangent to the x-axis and then do a 
180 turn around and leave the pole turning downwards.  A "kink" on a curve is usually referred 
to as a corner, but this is stronger than a mere corner in that there is a complete reversal of 
direction. Such a phenomenon is referred to as a cusp.

r = a 1Csin θ
This is also a cardioid. It is oriented differently than the foregoing cardioid.

plot 4 1Csin θ , θ, θ = 0 ..2 π , coords = polar, scaling = constrained
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r = a 1Kcos θ
Ditto.

plot 4 1Kcos θ , θ, θ = 0 ..2 π , coords = polar, scaling = constrained
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r = a 1Ksin θ

You guessed it!
plot 4 1Ksin θ , θ, θ = 0 ..2 π , coords = polar, scaling = constrained
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Any of these four figures is readily sketched from the four points determined by the values 

θ = 0,
π
2

, π,
3 π
2

 once the figure is recognized from its equation as a cardioid.

r = f θKθ0

In the foregoing examples we have seen similar equations which produce identical figures in 
differing orientations. In this section we explain the reason for this and open up possibilities for 
even more orientations.

The student should have learned at some point that for a given function f x  and a given constant 
x0, the Cartesian graphs of y = f x  and y = f xKx0  are simply related by a horizontal shift, or
translation. The reason for this is as follows. If the point (a, b) is on the graph of y = f x , then 
b = f a  which means that b = f aCx0Kx0 , and this places the point (aCx0, b) on the graph of
y = f xKx0 . The converse is clearly also true.

A very similar reasoning applies when comparing the graphs of r = f θ  and r = f θKθ0 . The 

point with polar coordinates (a, b) satisfies r = f θ  exactly when the point with polar coordinates
(a, bCθ) satisfies r = f θKθ0 . But θ is an angle, not a distance so the result of increasing each 

value of θ by a constant amount θ0 produces a rotation. In summary, the graph of r = f θKθ0  is

a rotation of the graph of r = f θ  through the angle θ0.
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The first equation of the cardioid presented above was r = a 1Ccos θ . To rotate the figure 

counter-clockwise through 90 we write r = a 1Ccos θK
π
2

. From the trig identity (you 

should know this one!) cos αCβ = cos α  cos β Ksin α  sin β  we have 

cos θK
π
2

= sin θ  so that r = a 1Csin θ . The other two cases of the cardioid can be 

obtained in similar fashion. 

Let's have Maple draw a cardioid at a 60 angle with the x-axis.

plot 1Ccos θK
π
3

, θ, θ = 0 ..2 π , coords = polar, scaling = constrained
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r = aCb cos θ
The graph of this equation is called a limaon. Limaons come in three varieties, depending on the 
relation of a   to b . The simplest case occurs when a = b .  In that case either a = b or a =Kb so 
the limaon is a cardioid. In case b ! a  the value of r can never be 0 and either is always 
positive or else is always negative. The graphs looks like a cardioid that "changes it mind" just 
before reaching the pole. The following two Maple plots illustrate this.

plot 3C2 cos θ , θ, θ = 0 ..2 π , coords = polar, scaling = constrained
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plot K6K5 cos θ , θ, θ = 0 ..2 π , coords = polar, scaling = constrained
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In case a ! b  the value of r changes sign; that is, r is sometimes positive and sometimes 
negative. In this case the limaon has a loop. Consider, for example, the graph of 
r = 1C2 cos θ .

plot 1C2 cos θ , θ, θ = 0 ..2 π , coords = polar, scaling = constrained
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Notice that the graph enters and exits the loop at the pole. If we set r = 0 in the equation

r = 1C2 cos θ  we get cos θ =K
1
2

 which will occur for θ =
2 π
3

,
4 π
3

. For θ in the interval (

2 π
3

,
4 π
3

) the value of r is negative.  This causes the points along the loop to fall in the first and

fourth quadrants, even though the associated values of θ fall in the second and third quadrants.

Given an equation of a limaon, the easiest way to determine which of the three types of limaons 
its graph will be is to consider the largest and smallest values of r. If these two values are either 
both positive or both negative, then the value of r is never zero and the limaon is the first type 
considered above. If either the maximum or minimum value of r is zero, then the limaon is in fact
a cardioid.  If the maximum value of r is positive and the minimum value of r is negative, then 
the limaon has a loop.

r = aCb sin θ

Based on the discussion above concerning rotations we see that the graph of r = aCb sin θ  is a 
rotation of the foregoing.  Consider, for example, the graph of r = 4K5 sin θ . The largest and 
smallest values of r in this equation are 9 and -1, corresponding to the extreme values -1 and +1 of
θ, so this is a limaon with a loop.

plot 4K5 sin θ , θ, θ = 0 ..2 π , coords = polar, scaling = constrained
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r = a cos n θ , n = 2, 3, 4 ...

r = a sin n θ , n = 2, 3, 4 ...

We will discuss these two curves together, since they are realted by a rotation. 
In fact, we will describe first how to sketch the second equation, then modify 
the procedure slightly to sketch the first. Our discussion will be easier to follow
if we assign specific values to a and n.

The value of n should be an integer. The case of n = 1 has been discussed above and is a circle, so 
that case is not included here. Suppose we take a = 5 and n = 3. The resulting figure is called a 3-
leaved rose, and is sketched below.

plot 5 sin 3 θ , θ, θ = 0 ..π , coords = polar, scaling = constrained
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From the equation r = 5 sin 3 θ  we see that that the tips of the petals will occur where the factor
sin 3 θ  is 1 or -1. Thus the rose is "enveloped" by the circle r = 5. A suggestion for sketching 
the graph of r = a sin n θ  is to begin by sketching the cirle r = a, even though only certain of the
points on the circle will be on the final graph. Notice next that each single petal is generated in 
the graph as the factor sin 3 θ  varies either from 0 up to 1 and back down to 0, or else from 0 
down to -1 and back up to 0. In order for either of these to happen, the angle 3 θ must increase by

a total of  π radians (i.e. 180). For this to occur, θ itself must increase by an amount 
π
3

 (i.e. 60). 

To help in sketching the equation r = a sin n θ , we define the quantity 
π
n

 to be the sector size 

associated with the graph of the equation, and starting out at θ = 0 we divide the circle r = a into 
2 n sectors, like slicing a pie. In the case of the graph above, our sketch would look like this:



Each petal of the 3-leaved rose we are discussing will occupy one of these six sectors. As an 
additional aid in sketching the petals, we present the following useful fact concerning polar 
graphs.

Suppose the polar graph of an equation r = f θ  passes through the pole for θ = θ0 

(i.e. suppose f θ0 = 0). Then the line θ = θ0 is tangent to the graph at the pole.  (We are 

assuming that the function f θ  is differentiable at θ0.)

As an example of this consider the limaon r = 1C2 cos θ  graphed above. We saw there that 

r = 0 for θ =
2 π
3

,
4 π
3

. Suppose we redraw the limaon and add the lines θ =
2 π
3

 and

θ =
4 π
3

.



Now let's tie this observation in with our study of the 3-leaved rose. The crucial observation is 
that the tangent lines at the pole for the 3-leaved rose will coincide with sector lines that we have 
already drawn, since our sector lines were determined by setting the factor sin 3 θ  equal to 
zero. 

So here is a system for sketching the 3-leaved rose. Begin at the pole with θ = 0. With increasing 
values of  θ, enter the first sector tangent to the sector line θ = 0. Gradually turn and approach the
enveloping circle r = 5 tangentially at the middle of the sector and then turn and reenter the pole 

tangent to the sector line θ =
π
3

. Now exit the pole entering the next sector with negative values 

of r and proceed in similar fashion tangential to the enveloping circle at the middle of the sector.  
Then turn around and reenter the pole tangent to the next sector line, and so on, and so on.  By 
following the sector lines through the pole we are led to describe the three petals of the 3-leaved 
rose. The following plots illustration the steps described above:
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If the reader will trace out the above plots with increasing θ he will discover that the entire 3-
leaved rose is generated as θ varies from 0 to π.  If θ is allowed to increase from π to 2 π the rose 
is traced out a second time.  This sort of thing always happens whenever the integer n is odd.  

Half of the 2 n sectors (each of size 
π
n

) will be empty, and the n petals will be traced out as θ 

increases from 0 to π.  However, when n is even, the petals will be traced out in all sectors. Once 
again n petals will be traced out as θ increases from 0 to π, but as θ increases from π to 2 π an 
additional n petals are traced out in the remaining n sectors, rather than a retracing of the first n 
petals.  The neat part about the method outlined above (i.e. following the sector lines through the 
pole) is that the generation of 2 n petals for even values of n is automatic. Try it for the example 
below (r = sin 2 θ ).

plot 1, θ, θ = 0 ..2 π , sin 2 θ , θ, θ = 0 ..2 π , coords = polar, scaling = constrained,
axes = none
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The graph of r = a cos n θ  is a rotation of the graph of r = a sin n θ  through half of a sector 

(through an angle of 
π

2 n
). This is intuitively clear since cos 0 = 1, placing the graph at the tip 

of a petal when θ = 0. It can also be seen from the discussion above on rotations and the fact that 

sin n θC
π

2 n
= cos n θ . 

In summary, the graphs of r = a cos n θ  and r = a sin n θ  are n-leaved roses when n is an 
odd integer greater than 1 and are 2n-leaved roses when n is an even integer.

Have Fun
What about polar curves that aren't standard? What if n isn't an integer in the "rose" equations?

plot cos
θ
3

, θ, θ = 0 ..3 π , coords = polar, scaling = constrained
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Wow! This looks like a limaon with a loop, except that the loop isn't at the origin. I wonder if it 
really is?

How about something crazy like r = cos θ  sin 2 θ ?
plot cos θ  sin 2 θ , θ, θ = 0 ..2 π , coords = polar, scaling = constrained
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Looks like a butterfly! Let's change the sin 2 θ  term to cos 2 θ  and see what happens.
plot cos θ  cos 2 θ , θ, θ = 0 ..2 π , coords = polar, scaling = constrained
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Looks like a fish!

Check this one out.

plot sin
8 θ
9

, θ, θ = 0 ..18 π , coords = polar, scaling = constrained, axes = none
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Here are some pretty plots that we get by using an alternate command for plotting in polar 
coordinates. You can find an explanation with the Maple help engine.
with(plots):

polarplot(sin(2*t)+0.2*sin(8*t),scaling=CONSTRAINED,axes=NONE,

title=`r = sin2t+(1/5)sin8t`);



> > 

r = sin2tC(1/5)sin8t

plot({[cos(4*t),t,t=-Pi..Pi],[sin(4*t),t,t=-Pi..Pi]},coords=

polar,axes=NONE,scaling=CONSTRAINED,title=`r = cos4t together 

with r = sin4t`);



> > 

r = cos4t together with r = sin4t

polarplot(2*sin(t)+sin(2*t+sin(8*t)),scaling=CONSTRAINED,axes=

NONE,title=`r = 2sint + sin(2t+sin8t)`);



> > 

r = 2sint C sin(2tCsin8t)

polarplot(sin(t)*sin(2*t)*sin(3*t),t=-Pi..Pi,scaling=

CONSTRAINED,axes=NONE,title=`r = sint sin2t sin3t`);



> > 

r = sint sin2t sin3t

polarplot(1+sin(2*Pi*sin(2*t-Pi/2)),scaling=CONSTRAINED,axes=

NONE,title=`r = 1 + sin(2Pi sin(2t - Pi/2))`);



> > 

r = 1 C sin(2Pi sin(2t - Pi/2))

polarplot(4+sin(2*t+Pi*sin(4*t)),scaling=CONSTRAINED,axes=NONE,

title=`r = 4 + sin(2t + Pi sin4t)`);



> > 

r = 4 C sin(2t C Pi sin4t)

polarplot(sin(2*t)*sin(2*Pi*(cos(2*t)+sin(2*t))),scaling=

CONSTRAINED,axes=NONE,numpoints=1000,title=`r = sin2t sin(2Pi

(cos2t + sin2t))`);



> > 

r = sin2t sin(2Pi(cos2t C sin2t))

The beauty of the next pattern is partially due to roundoff errors for large angles.
plot 0.2Ccos 20 t , t, t = 0 ..40 π , coords = polar, scaling = constrained, axes = none




