

Calculus III (Maths 201-DDB)

Justify all your answers — just having the correct answer is not sufficient. Pace yourself — a rough guide is to spend not more than 2m minutes or so on a question worth m marks.

- (6) 1. Suppose $F(x, y, z) = x^2y 2x + y z^2$.
 - (a) Find the directional derivative of F at the point $P_0(1, 2, -11)$ in the direction from P_0 to the origin.
 - (b) For the level surface (contour surface) F(x, y, z) + 119 = 0 find the equation of the tangent plane at P_0 .
 - (c) Determine the maximum rate of increase in F at P_0 ; in what direction does the maximum rate occur?

- (4) 2. Suppose $z = f(x^2 y^2, y^2 x^2)$, f a differentiable function, show that $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = 0$.
- (6) 3. Find and classify the critical points of $f(x,y) = 4xy 2x^4 y^2$.
- (6) 4. Use Lagrange Multipliers to find the extreme (max and min) values of f(x, y, z) = 3x y 3z subject to the constraints z = x + y and $x^2 + 2z^2 = 18$.

5. Evaluate the following: (change coordinates as appropriate).

(a)
$$\int_0^1 \int_x^1 e^{-y^2} dy dx$$

(b)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \frac{1}{1+x^2+y^2} \, dy \, dx$$

(b)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \frac{1}{1+x^2+y^2} \, dy \, dx$$

(c)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2}-y^2} \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx$$

- (6) 6. Sketch the solid region S that lies inside both the cylinder $x^2 + y^2 = 4$ and the ellipsoid $2x^2 + 2y^2 + z^2 = 18$. Find the volume of S.
- 7. Use the transformation $\{u = x + y, v = x y\}$ to evaluate the integral $\iint_{\mathcal{R}} e^{x+y} dA$, where \mathcal{R} is the region bounded by the lines x + y = 0, x + y = 1, x y = 0, x y = 1.

(Total: 50)